Journal of
Applied Mechanics

Published Bimonthly by The American Society of Mechanical Engineers

VOLUME 68 « NUMBER 2 « MARCH 2001

145 Finite Amplitude Azimuthal Shear Waves in a Compressible Hyperelastic
Solid

J. B. Haddow and L. Jiang

153 A Dispersive Model for Wave Propagation in Periodic Heterogeneous
Media Based on Homogenization With Multiple Spatial and Temporal
Scales

W. Chen and J. Fish

162 Transient Green’s Function Behavior for a Prestressed Highly Elastic
Half-Space
L. M. Brock

169 Intersonic Crack Propagation—Part I: The Fundamental Solution
Y. Huang and H. Gao

176 Apparently First Closed-Form Solutions for Frequencies of
Deterministically and /or Stochastically Inhomogeneous Simply Supported
Beams

S. Candan and . Elishakoff

186 Exact Solutions for Out-of-Plane Vibration of Curved Nonuniform Beams
S. Y. Lee and J. C. Chao

192 Dynamic Analysis of a One-Dimensional Poroviscoelastic Column
M. Schanz and A. H.-D. Cheng

199 Bifurcations of Eigenvalues of Gyroscopic Systems With Parameters Near
Stability Boundaries
A. P. Seyranian and W. Kliem

206 Does a Partial Elastic Foundation Increase the Flutter Velocity of a Pipe
Conveying Fluid?
|. Elishakoff and N. Impollonia

213 Optimal Fiber Orientation in Locally Transversely Isotropic Creeping
Structures
D. N. Robinson and W. K. Binienda

218 Determination of Poisson’s Ratio by Spherical Indentation Using Neural
Networks—Part I: Theory
N. Huber, A. Konstantinidis, and Ch. Tsakmakis

224 Determination of Poisson’s Ratio by Spherical Indentation Using Neural
Networks—Part II: Identification Method
N. Huber and Ch. Tsakmakis

230 Generalized Bending of a Large, Shear Deformable Isotropic Plate
Containing a Circular Hole or Rigid Inclusion
C. W. Bert and H. Zeng

234 Three-Dimensional Solutions of Smart Functionally Graded Plates
J. N. Reddy and Z.-Q. Cheng

242 Simulations of Crack Propagation in Porous Materials
T. Nakamura and Z. Wang

252 A New Method for Calculating Bending Moment and Shear Force in
Moving Load Problems
A. V. Pesterev, C. A. Tan, and L. A. Bergman

260 Thin-Walled Multicell Beam Analysis for Coupled Torsion, Distortion, and
Warping Deformations
J. H. Kim and Y. Y. Kim

(Contents continued on inside back cover )

This journal is printed on acid-free paper, which exceeds the ANSI Z39.48-
1992 specification for permanence of paper and library materials. @™
@ 85% recycied content, including 10% post-consumer fibers.




(Contents continued )

Journal of Applied Mechanics Volume 68, Number 2 MARCH 2001

270 Hysteresis Behavior and Modeling of Piezoceramic Actuators
X. Zhou and A. Chattopadhyay

278 Rheological Behavior of Confined Fluids in Thin Lubricated Contacts
J. Tichy

284 Viscoelastic Functionally Graded Materials Subjected to Antiplane Shear Fracture
G. H. Paulino and Z.-H. Jin

294 Rupture of Thin Power-Law Liquid Film on a Cylinder
Rama Subba Reddy Gorla

298 Thermal Deformation of Initially Curved Substrates Coated by Thin Inhomogeneous Layers
A. Wikstro'm and P. Gudmundson

304 A Strain-Based Formulation for the Coupled Viscoelastic ~ /Damage Behavior
K. Abdel-Tawab and Y. J. Weitsman

312 Flow in Porous Media of Variable Permeability and Novel Effects
D. A. Siginer and S. I. Bakhtiyarov

320 Rotary Inertia in the Classical Nonlinear Theory of Shells and the Constitutive (Non-Kinematic ) Kirchhoff
Hypothesis
J. G. Simmonds

324 Stability of the Shanley Column Under Cyclic Loading
E. Corona

332 Modal Analysis of Ballooning Strings With Small Curvature
R. Fan, S. K. Singh, and C. D. Rahn

BRIEF NOTES

339 A New Lagrangian and a New Lagrange Equation of Motion for Fractionally Damped Systems
O. P. Agrawal

341 On the Unification of Yield Criteria
S. C. Fan, M.-H. Yu, and S.-Y. Yang

344 Analytical Solution for the W-N Criteria for the Prediction of Notched Strength of an Orthotropic Shell
R. Ramesh Kumar, S. Jose, and G. Venkateswara Rao

346 Stress Wave Propagation in a Coated Elastic Half-Space due to Water Drop Impact
Hyun-Sil Kim, Jae-Seung Kim, Hyun-Ju Kang, and Sang-Ryul Kim

348 Closed-Form Representation of Beam Response to Moving Line Loads
Lu Sun

350 An Analytic Algorithm of Stresses for Any Double Hole Problem in Plane Elastostatics
Lu-ging Zhang and Ai-zhong Lu

353 The Rotating Tautochrone
T. J. Osler and E. Flores

357 Smooth Asymmetric Two-Dimensional Indentation of a Finite Elastic Beam
M. Zhou and W. P. Schonberg

ANNOUNCEMENTS AND SPECIAL NOTES

361 Information for Authors

362 Preparing and Submitting a Manuscript for Journal Production and Publication
363 Preparation of Graphics for ASME Journal Production and Publication

364 New Reference Format

365 Engineered Adaptive Structures lll—Announcement



J. B. Haddow

Department of Mechanical Engineering,
University of Victoria,

Victora, BC V8W 3P6, Canada

Mem ASME

L. Jiang

Martec Ltd.,

1888 Brunswick Street
Suite 400,

Halifax Nova Scotia B36 3J8
(Canada

1 Introduction

Static azimuthal shear of a compressible hyperelastic solid hf #
been considered by various authors and recently Polignone g

Finite Amplitude Azimuthal Shear
Waves in a Compressible
Hyperelastic Solid

Lagrangian equations of motion for finite amplitude azimuthal shear wave propagation in
a compressible isotropic hyperelastic solid are obtained in conservation form with a
source term. A Godunov-type finite difference procedure is used along with these equa-
tions to obtain numerical solutions for wave propagation emanating from a cylindrical
cavity, of fixed radius, whose surface is subjected to the sudden application of a spatially
uniform azimuthal shearing stress. Results are presented for waves propagating radially
outwards; however, the numerical procedure can also be used to obtain solutions if waves
are reflected radially inwards from a cylindrical outer surface of the medium. A class of
strain energy functions is considered, which is a compressible generalization of the
Mooney-Rivlin strain energy function, and it is shown that, for this class, an azimuthal
shear wave can not propagate without a coupled longitudinal wave. This is in contrast to
the problem of finite amplitude plane shear wave propagation with the neo-Hookean
generalization, for which a shear wave can propagate without a coupled longitudinal
wave. The plane problem is discussed briefly for comparison with the azimuthal problem.
[DOI: 10.1115/1.1334862

perposedr denotes the transpose. For pure dilatatidgg= 0, and
isochoric deformatiorH=0. The generalized Blatz and Ko
in energy functiol 6]) and the polynomial strain energy func-
proposed by Levinson and Burgg3$ are examples of func-

Horgan[1], Beatty and Jiang2] and Jiang and Ogdefi8] have {ions which can be expressed in the fotinl).

obtained conditions that compressible strain energy functions|t may be shown that

must satisfy so that pure azimuthal strain is possible. A related

dynamic problem of small azimuthal oscillations superimposed on 1

a finite static pure azimuthal shear of a particular compressible H(l3)= EK(I%”— 1)24+0(137-1)3, (1.3)
hyperelastic solid has been considered by Vandyke and Wineman

[4], who found that the small oscillations induce radial motio
The purpose of this paper is to consider propagation of finiﬁ
amplitude azimuthal shear waves in a compressible isotropic elas-

hereK is the bulk modulus for infinitesimal deformation from
e natural reference state, and the approximation

tic solid. This is a plane-strain problem in which a spatially uni- 1

form azimuthal shearing stress is suddenly applied to the surface H(ls)= _K(|%/2_ 1)?, (1.4)
of a circular cylindrical cavity in an unbounded medium, with the 2

radius of the cavity held constant. A purely mechanical theory is ) o i )
considered and a study by Haddow and JigBigprovides some IS applicable for sufficiently small values @ify*— 1|, which de-
justification for this. The numerical procedure used can also §&ase a¥/u increases. ) )
applied when there is a fixed outer radius which results in re- Numerical results are presented fi§/.=100, which gives
flected waves. Numerical results are obtained for a class of str&fisson’s ratioy=0.495 for infinitesimal deformation from the
energy functions which is a compressible generalization of tf@tural reference state. This is close to the vatud.493, ob-

Mooney-Rivlin form and is given by

tained experimentally by Beatty and Stalnak8t for urethane.
For the problems considered, the volume strdi’—1, is a

W=Wp+H(l3), (1.1)  second-order effect with its maximum absolute value less than
where 0.0035. Results were obtained using approximatid), and
n B o (I+v) (1-2v) _ 1 .,
Wo =5 {f(11=313%+(1-N)(1,/15-313)},  (L.2) H= 2| 315% — —+ —— 1"

andH(l3) satifies the conditionsi(1)=H'(1)=0. In (1.2), u is

the shear modulus for infinitesimal deformation from the natural
reference state,2f=0, 1, |,, andl; are the principal invariants
of FTF or FFT, F is the deformation gradient tensor and the su-

(1+v) n (1-2v) I,3,/(12V)H’

14 14

+(1—f)[3l31’3—
(1.5)

for the generalized Blatz and Ko model, and
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for the Levinson and Burgess model. The results obtained usingThe nominal stresses of interest are then given by

(1.4), (1.5), and(1.6) were in very close agreement. Consequently -

it is reasonable to assume the results are valid for any admissible él :M: [F(6— 6~ Y2

form of H if approximation(1.4) is applicable. 1755 M
Strain energy functions of the clag%.1) do not satisfy the . B o

necessary conditions for the existence of static pure azimuthal —(1-H(\267 352+ 673\ "2%7%0))

shear, and the propagation of finite amplitude azimuthal waves 9H

involves coupled radial longitudinal waves. +—, (2.8)
A plane shear wave can propagate without a coupled plane g

longitudinal wave if a generalization of the neo-Hookean strain IW

energy function, that ig1.1) with f=1, is assumed. Fofl.1), élzz_zﬂ{fy+(1_f),y)\2§’2}_ (2.9)

with 1>f=0, a plane shear wave cannot exist without a coupled dy

longitudinal wave. A brief discussion of the propagation of plan f=1,S,, depends only o and the constant value af andSy,

shear and plane longitudinal waves is now given, as a preliminac%pends only ony, so that there is a limited form of superposition
to the consideration of the azimuthal problem. Governing equations for the wave propagation problem are the

2 Plane Wave Problem compatibility equations,

In this section we consider plane longitudinal and transverse ‘9_57 ‘9_\/1: (2.1()
waves propagating in th¥; direction of a half-space which is ) SR '
defined in the natural reference state Ky=0, where OX,,
ae{l,2,3, is a rectangular Cartesian coordinate system. The dy- (7_7_ (7_\/2:0 2.10)
namic deformation is plane strain and is given by a Xy ’

X =X1(X1,1),  Xo=AXo+q(Xq,1), X3=Xj, (2.1) and the equations of motion,
where \ is a constantt is time, X,, «<{1,2,3 and x,, i oV, 1 9S4
e€{1,2,3 are the coordinates of a material particle in the natural o0t P_o 3_)(1: ' (2.1HB)
reference and current states, respectively. The special case with
A=1, is of most interest; however, the more general case of con- N, 1 9S;,
stant\ is considered for comparison with the azimuthal shear T pe Xy (2.11)
problem.

Components of the deformation gradient tensor are given by\/\/here'p0 is the density in the natural reference_ configuration.
Equations(2.10 and (2.11) are a totally hyperbolic system of

6 0 0 quasi-linear partial differential equations. The wave velocities
[Fl=|y N © 2.2) +c,_ and =cy, where the+(—) signs denote waves propagating
’ ' in the +(—) X, directions, are obtained as indicated in the text by
0 01 Whitham[9], and are given by
whered=dx, /9X,, y=dql9X,. The principal invariants of 'F
or FFT are then given by o \/(C11+ )+ V(C1—Cp) 2+ 4C§2
L™ ’
2

l1= 8%+ y*+\2+1,

=N+ 2+ 87602, (2.3) \/(011+ €20~ V(Cy—C)*+4ch,
Cr=
2

I3=N26% , (2.12)
A Lagrangian approach is used and the nominal stress teé®iger, where
a function of F(Xq,t), A -
R § R 1S, 1 #PW 1S, 1 PW
S=9(F an X1,1)=S(F(Xq,1)). 2.4 Cu=— =73, Co=——=—"—">7,
S(F) X1 =S(F(Xy, 1) (2.4) R R r R bl .
The boundary conditions are ~
1 AW

where S;; and S;, are the normal and tangential component
respectively, of the stress vector acting on a material plane surf
normal to theX;-axis. The initial conditions are

Jtis evident from(2.12) thatc, >cy, consequentlg, andcy are
St propagation speeds of what are essentially longitudinal and
shear waves, respectively.fl= 1 it follows from (2.7) and(2.13
S11(X1,00=514X1,00=0 and V(X1,0)=V,(X{,00=0, thatc,,=0, ¢4 is a function ofé and the constant value afonly,

(2.6) andc,, is a constant, so that the wave speegds-/cy; and ct

whereV; andV, are the nonzero velocity components and are in VT2 are uncoupled. It also follows that, if=1, the system of

e : : equationg2.10), (2.11a), governing longitudinal wave propaga-
the X, and X, directions, respectively. The nominal stress®s, .. X
and S;,, are identical to the corresponding Cauchy stresses, tion, anq the systen{Z.ll(ﬁ)), (2.11b), g(?vernllng shﬁar wave
and o1, whenn=1. propagatlon,_at:re uncoupeI , (ions_equ_ently a plane shear wave can
It is necessary to expres¢s.1), as a function o®, y, and\, and propagate without a coupled longitudinal wave.
it follows from (1.1), (1.2), and(2.3) that

W(3,7.\) 3 Formulation of Azimuthal Shear Problem
w[ f(8%+ ¥+ N2+ 1-3\2Rs?B) The surface of a circular cylindrical cavity of fixed radius,in
T2 (1 F) (A 2+ AN 26724+ 572+ 13\ 285728 an unbounded medium, is subjected to a spatially uniform sudden
application of azimuthal shearing stress. The numerical scheme
+H(N\26%). (2.7) used to obtain solutions is applicable to consider reflected waves
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propagating radially inwards from an outer cylindrical surface;

however, in this paper we consider only waves traveling radially

outwards.

Cylindrical polar coordinates of a material point are denoted by

R,0,Z in the natural reference configuration andmy,z in the

deformed configuration. The deformation is plane strain and is

given by
r=r(Rt), 6=0+g(Rt), z=2, (3.1)
so that the components of the deformation gradient tensor are
r' 0 O
[Fl=|rg" /R 0}, (3.2)
0 0 1

where a prime denotes the partial derivative with respeBt fthe
following notation is introduced:

P=V,, or=V,, (3.3)

g=o,
and

r'=6, r/IR=\, g'=a and rg’'=yv, (3.4)

where a superposed dot denotes partial differentiation with respget
tot. If r/R=1 in (3.2 the resulting isochoric deformation is pure

azimuthal shear, an@.2) is of the same form a&.2) with A=1.

Certain compressible strain energy functions admit static pure ag
muthal shear deformation; however, it is probable that there is n
compressible strain energy function which will admit dynamic

pure azimuthal shear.
Again a Lagrangian approach is adopted and, similg2td),

S=S(F) and S(Rt)=SF(R1)).
The components df are
Srr Spg O
[S]=| Ser Ses O
0 0 S

However, onlySg,, Sgy, and Sg, are of interest for the wave

propagation problem and these are given by

< W
RO~ (?'y 1

AW
N

. W
Sri=750 Ses (3.5)
where the strain energy function is a functidh= \7V( S,\,y) of &,
\, andy.

The boundary conditions are

Sro(AD=SU(1), r(AD=A=V,(A)=0, \(A)=1,
(3.6)

whereU(t) is the unit step function anfl, is a constant, and the

initial conditions are

S(R0)=0, V,(R,00=V,(R,0)=0.

4 Governing Equations for Azimuthal Shear Problem

(3.7)

DivS=poa, (4.2)

wherea is the acceleration with nonzero components,
a,=V,—\Rw?, (4.3)
a,=\Ro+2V, 0, (4.3)

and pg is the density in the natural reference configuration. The
nontrivial components of4.2) are

ISrr | Srr—Seu '

8R’ + rTf aSrs=po(V; —A\Rw?), (4.4)
and

ISrs  Sre o .

—+ |1+ —|= ) .

R + R 1 N po(ARw+2V,w) (4.5)

In order to apply the numerical scheme it is necessary to put the
system of equations given k4.1), (4.4), and(4.5) in the conser-
vation form

T IR

gt 4R (4.6)

ereQ=(\,8,7,V,,V,)T, the superposed denotes the trans-
pose and is a source term.

i_Equations(4.1a) and (4.1b) are in a form suitable fof4.6);
8wever,(4.1c) must be put in the form

&'y an V95*Vr’y
9t IR RA

which is obtained by using the relationg=\Ra and V,
=\Row. Also the acceleration componeris3) must be put in the
form

=0, 4.7)

N, V2
a=——-=, a

- N, V,V,
T ot AR’ s

ot AR

(4.8)

At this stage it is convenient to adopt the following nondimen-
sionalization scheme:

(R =(r,RIA,  (W,9=(W,S)/u, t=t(ulpo) YA,

(Ve Vo) =(V, V) ol (ulpg) 2 w=wAl(ulpo)*2  (4.9)

Henceforth nondimensional quantities are used, with the overbars
omitted, and primes and superposed dots now denote partial dif-
ferentiation with respect to nondimensiorialndt, respectively.
Since the overbars are omittéd.1a,b) and (4.7) are unchanged
by the nondimensionalization.

The nondimensional forms of the matrices(6),

The following compatibility equations can be deduced from

(3.3 and (3.9
NV,

< RO (4.19)
98 IV, A
E_ﬁ_ ’ ( )
Ja &w_ a1
t R (4.10)

and the equation of mation in vector form is

Journal of Applied Mechanics

A 0

) -V,
Q=| v |, H=| —Vy

Vr _SRr

Vy —Sgre

and
-V, /R
0

(Vg6—Viy)/(AR)

—(Srr—Se )R+ ¥Sgs/ (A\R) = V5 /(AR)
—Sre(1+ 8IN)/R+V,V,/(AR)

are formed from(4.1a), (4.1b), (4.7) and the nondimensional
forms of (4.4) and (4.5 with the acceleration components given
by (4.8). In order to determine the wave velociti€4,6) must be
put in the form

» (4.10)

MARCH 2001, Vol. 68 / 147



1
N
os | | N
>~ 06
0.4
0.2
0 .
1 1.5 2 25
R
Fig. 1 Relationships between ¥ and nondimensional radius R
for nondimensional times 0.1, 0.2, 0.3, 0.4, 0.5 and f=1 and f
=0.6
9Q 9Q
—+ —+b'= .
ot A(Q) ot b"=0, (4.11)
where
A=0H(Q)/dQ, (4.12)

andb’=b, sinceA is not an explicit function oR and/ort. Equa-

tion (4.11) represents a totally hyperbolic system for the present
problem and the wave velocities are given by the eigenvalues of
A. The numerical scheme used does not involve the relations

along the characteristics consequently the eigenvectofs' alre
not required. It follows from4.10 and(4.12 that

0 0 0 0 0

0 0 0O -1 O
A=l 0 0 0 0 -1, (4.13)
Ay Az Az O 0
A51 A52 A53 0 0
where
o SR 92W o Sei_ P2W
TN gsaNT TR s a8
0Se,  PW
A=y T Geay
(4.14)
p S PW Sk _
) aNdy’ %2 a5 e
A ISry W
S
The eigenvalues oA are
1 1/2
0, = E[_(A42+A53)i{(A42_A53)2+4Az213}1/2]] '
(4.15)

148 / Vol. 68, MARCH 2001

Vy
S
(4]

-1

R

Fig. 2 Relationships between nondimensional V, and nondi-
mensional radius R for nondimensional times 0.1, 0.2, 0.3, 0.4,
0.5and f=1 and f=0.6

and the nonzero eigenvalues are denotedtlby and=*c, where

the +(—) signs denote waves propagating in the radially outwards
(radially inwards. For comparison with the plane wave problem
¢, andcy are expressed in the form

\/(C11+ Coo) + V(C11— C)*+4ch,
CL:

, 4.1
> ( )
(Cy3+Cop) — V(Cyy—Cpp)*+4cT,
Cr= . (4.1@)
2
where

o _PW o 92W A W
C11= 427 557 C22= —As3z= Eva C12 8550y
(4.17)

In (4.16 ¢, >cy andc, andcy represent an essentially longitudi-
nal wave speed and an essentially shear wave speed, respectively,
as for the plane case.

The nondimensional form af.7) is

W(8,7.\)
1[F(8%+ y?+ N2+ 1-3\235%)

C2[+(A-F)(N 225 28 24130 22

1
- 22
+ P H(\25?), (4.18)

where 8, \, and y are given by(3.4) for the azimuthal shear
problem. It follows from(4.17) and(4.18) that

Cy=F(L+1/A\ZRs~ )+ (1—)(36 *N"292+3574

1 9%H
—5/3\ 7235783 + T (4.1%)
Cop=F+(1—F)62\"2, (4.1%)
Cip=—2(1—f)y6 N2 (4.1%)
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Fig. 3 Relationships between 6—1 and nondimensional radius R for nondimensional times
0.1,0.2,0.3,04, 05

If f=1 in (4.18, it follows from (4.19 thatc,,=0, ¢y is a R;=1+(i—1)AR, ie{lm+1}. For a typical time stept
function of 5 andX only, andc,,=1, so that the wave speeds are=[t",t"*] andjth cellRe [R;.Rj.1] the weak form of the gov-
erning equation can be formulated as

1 f?ZH 1/2
_ _ 2130-4/3, _ _
CL=VCy1=| L+ 1A\ "+ T and cy=+Cyp=1, " (R 9Q aH
. —+ —+b|dR dt=0, (5.1)
and are uncoupled. However, unlike the plane problem, the gov- tn R; at IR

erning equations for the essentially longitudinal wave propagation - _ _
and those for essentially shear wave propagation are coupled, cgsing the finite volume method. Integration(sf1) by parts gives
sequently an azimuthal shear wave cannot exist without a coupled

longitudinal wave forf =1. — — At - A ~
9 Q?I:%/ZZ Q?+1/2_ ﬁ(HHl_ Hj)—Ath;; 15, (5.2)

5 Numerical Method where the superposed bar, caret, and tilde denote spatial, time, and
Numerical results were obtained using a modified second-ord&lume-averaged quantities, respectively, whereas the subscripts

Godunov-type finite difference scheme. Application of thi@nd superscripts indicate time and space discretizations. Further

scheme requires that the governing system of equations be @Rproximations for the time-averaged values give

pressed in the conservation for#.6). In order to implement the

scheme a thick-walled cylinder with nondimensional inner angin+1 _ ~n _ﬁ A V(AT 1 A A
outer radii 1 andB, respectively, is considered. The interyalB] 61*1’2 Q12 AR[H(Q'“) H(Q;)]~Atb 2 (Qat Q.
is discretized intom equal cells of lengtAR=(B—1)/m and (5.3)

Journal of Applied Mechanics MARCH 2001, Vol. 68 / 149
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Fig. 4 Relationships between nondimensional V, and nondimensional radius R for nondi-
mensional times 0.1, 0.2, 0.3, 0.4, 0.5

where theQ;, je{1,2,... m+1}, are obtained by solving a Rie- where

mann problem at each cell interface and by considering the appro- a =" b'=q". .. —on

priate boundary conditions. jr12= Qjvs2” Qj-12:  Bj=0jr12— dj-12s
The present implementation of the second-order Godunov-type 1= 30— Q1

finite difference method follows the procedure proposed by van . . !

Leer[10] and represents the state variables at a given time-st@ﬁ,d

t", by piecewise linear functions of the form qe{\, 8,7V, V,}.
RIM=O" .+ (AQf\ 19)a _R The state variables at the cell boundaries at a half time-step,
Q(R, )*QJH/Z AR ( +12), t"*12 can be calculated using Taylor series expansions
for Re[Ry,Rj: 1], (5.4) Q1) =g lz+g(@ " ﬁ(@ "

j j+1 ’
where @Q?H,z)av denotes the spatial-averaged slopes of the state 2\ a j+12 2 \R j+12
variables which can be evaluated from the spatial-averaged val- -6a)
ues,Q", in adjacent cells using a monotonic condition defined as — At [9Q\" AR [aQ\"

(Qfﬁ’l/Z)*an 4+ — = | —
min(|aj', 14/2, 2|b|, 2|c,|)xsgnaj'; ), e 2 at j+1/2 2 R j+1/2‘
(2A0] 10)a,= 1 if sg(b])=sgn(c].,), (5.60)

0, otherwise, where the superscript(—) denotes the state variables at the right
(5.5) (left) side of the cell interface. Approximating the spatial deriva-
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Fig. 5 Relationships between A—1 and nondimensional radius R for nondimensional times
0.1,0.2,0.3,04, 05

gve_s in_(5.6)bby the sphatif}l avera%efd slop;:‘shand elimina}}ing tim@iscontinuities between the right and left stat€¥' (%" and

erivatives by using the linearized form of the system of governen+12 - o g .

ing equationd4.11 gives ?QJ )~. Since the overall accuracy of the Godunov-type flnlte
difference scheme is usually controlled by the order of the spatial

discretizations, an approximate Riemann problem solver has been
(AQT+1/2)av developed in the present work based on the jump relations

. £ULQ]=[H], (5.8
— 5 b(Q1p), (5.79) +U.[Q]=[H], (5.%)

which follow from (4.6). In (5.8a,b), U, and Ut are the essen-
(AQ?+1/2)av tially longitudinal and essentially transverse discontinuity speeds,
respectively, and the square brackets denote the discontinuity of

At — the en_closed quantity. Approxim_atirig_L and U by the corre-
-5 b(QM 1), (5.7m) sponding wave speeds andcy given in(4.16 leads to

At
[+ EA(QjJrl/Z)

— 1
Q" =QL w3

n+1/2y— _ ~n 1 At ~n
(Qi<1) :Qj+1/2+§ I_ﬁA(QjJrl/Z)

+1/2\ + % +1/2\ + \ +1/2y +y
whereA andb are the Jacobian matrix and source term, as defined (CEJ ) (51_(5? ) )+(Vr_(V?i )1)=0, (5.%)

earlier in this paper, antd denotes the unit matrix.
In order to calculate the time-averaged state varialgs, a
Riemann problem must be solved at each cell interface to resoked

(e Y7 (8— (&) T) = (V,— (V3 ) 7)=0, (5.9)
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n+ 1/2)

(ch; n+1/2)+)+(\‘/9_(Vr;;r1/z)+):0’ verse shock with spedd+. Across this shock there is a jump in

4o
(=] (5.10) Y andV,, which coincides with a jump i andV, so that there
. ' is also a jump inSz, and Sg,. Ahead of this shocky=0 and
€Y F= () = (V= (Vi ¥ 7)=0. Sgs=0. There is also an essentially longitudinal shock with shock
(5.1m) speedU >U+. Across this shock there is a jump &% V, and
Sgr- The numerical scheme has produced some smearing for this

The time-averaged value afis approximated by shock. The two shock speets andU, , which are taken to be

~ 1 B positive since radially outward wave propagation is considered,
)\J':E(()\Jmllz TEOTT. (5.11)  satisfy the conditions
The boundary conditions must be considered in order to complete cr>Ur>cr, ¢ >U >c,
the numerical algorithm. For the inner surface the boundary cogng the jumps satisfy the jump relations
ditions (3.6) give
- ~ U[Q]=[H], (6.1)
)\l: 1, Vrl: 0, _ _
. . across a shock wheffap]=¢ —¢*, andp* and ¢~ are the
S1=(8 VAT — (V= (VI YA ) (V) T, values of the enclosed quantity ahead of and behind the shock,
R A ons (5.12) respectively, andJ is the shock speed. The results shown in Fig.
Y1=So/(F+(1=F)N\ 761 9), 5 indicate that there is also a jump d/dR across a jump irs.
A R Results were also obtained for valuesfol>f>0.6, in order
Vo= (Vi 2 = (= (AT ) x (e ). to examine the effect of incremental changes oh the relations

The boundary conditions @&=B can also be treated using afor A, 6 andV,. These results indicate that there is a gradual
similar approach. If it is assumed that both radial and tangentfé@ns't'on from the relations for=1 to the qualitatively different

displacement components are zerd?at B then relations forf=0.6, which involve shocks. These shocks become
. . . stronger ag is decreased and this is related to the coupling of the
Am+1=1 Vims1=Voms1=0, wave speeds fof<1.

Smi1=(Om D™+ (Vims 1= (VI YD )I(eYE)

7 Concluding Remarks
(5.13)

~ 1 R 1 e For the problems considered in this paper, the longitudinal and
Ymi1=Yme1) +Vome1—(VomyD) )/ (Crmy1) transverse wave speeds are uncoupled if, and onl?¥/ 9y

Although numerical results for times before the longitudinaf O It i easily deduced that, for isotropic strain energy functions,
wave reacheR=B are presented in this paper, it is clear that thiiS condition can be satisfied only\(1,,15,15) is of the form
finite difference scheme can be used to obtain solutions which W=Cy(1,—3)+Cy(1,—3)+Hy(l3), (7.1)

involve multiple wave reflection and interactions.
where C; and C, are constantsH;(1)=0 and C;+2C,

6 Numerical Results +H1(1)=0. Strain energy functioril.1) with f=1 is a special

In Figs. 1—5, results fory, &, \, V, , andV/, are shown graphi- case of(7.1). However, for azimuthal shear_ deformaFion, even if
cally, as functions oR, for times 0.1 to 0.5f=1 and f=0.6, the wave s_peeds are uncoupled the governing equations can not be
K/u =100, boundary conditioné8.6) with S,=1, and initial con- separated into two uncoupled systems which govern the propaga-

ditions (3.7). These results were obtained using approximatidiPn Of @ transverse wave and a longitudinal wave, respectively. It
(1.4) or the Levinson and Burgess relatith6). Results obtained seems that dynamic pure azimuthal shear deformation is not pos-

using (1.4) differ negligibly from those obtained usird.6) and siblg in a compressible hyperelastic solid; however, this still
any differences can not be shown in the figures. Results obtairff2its & rigorous proof.
using the Blatz and Ko relatiof1.5) are in very close agreement

with those obtained usingl.4) or (1.6). References
Resu.lts f‘?r’)’ andV, exhibit negl'g'ble dependence d’ﬂnq areé (1] polignone, D. A., and Horgan, C. O., 1994, “Pure Azimuthal Shear of Com-
shown in Figs. 1 and 2, respectively, for both valued,dfince pressible Nonlinear Elastic Circular Tubes,” Q. Appl. Ma#g, pp. 113—131.
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Rensselaer Polytechnic Institute, The model is based on the higher order mathematical homogenization theory with mul-
Troy, NY 12180 tiple spatial and temporal scales. A fast spatial scale and a slow temporal scale are
introduced to account for the rapid spatial fluctuations as well as to capture the long-term
behavior of the homogenized solution. By this approach the problem of secularity, which
arises in the conventional multiple-scale higher order homogenization of wave equations
with oscillatory coefficients, is successfully resolved. A model initial boundary value
problem is analytically solved and the results have been found to be in good agreement
with a numerical solution of the source problem in a heterogeneous medium.
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1 Introduction the conventional multiple-scale homogenization technique, these

secular terms cannot be cancelled out. To our best knowledge, the

W_hen j[he wavelength of a traveling s_|gr_1al na heterogen_eo esent manuscript represents a first attempt to resolve the prob-
medium is comparable to the characteristic length of the micrfyy ™= "' - oo i e mework of the multinle-scale ho-
structure, successive reflection and refraction of the waves he- Y P

; . . . .Irlogenization for wave propagation in composites.
tween the interfaces of the material lead to significant dispersi . . - .
effect (see, for exampld1—3)). This phenomenon cannot be pre- For dynamic problems, described by hyperbolic differential

. . N .equations, there are at least four scales involygédthe scale of
dicted by the classical homogenization theory and thus prompti oo
a significant interest in the scientific community in attempt t microstructure(2) the scale of the macrostructurs) the

develop a dispersive effective medium theory hortest wavelength of the signal traveling in the media, @nd
The use of multiple-scale expansions as a systematic tool tQF time scale of observation. The dispersion phenomena become

averaging for problems other than elastodynamics can be trace(g E glqgnt r\ghgﬂ thniot('jrgle tmngiOSWe'rsSilg;ggﬁ(aer::?u%hi'sT§:£ﬁfac;:lee’ tlg
Sanchez-Palencig], Benssousan, Lions, and Papanicoulal constructpunﬁorrxl valid asvm tgtic ex ansior;s
as well as Bakhvalov and Panaser&q The role of higher order y ymp P ‘

terms in the asymptotic expansion has been investigated in staB él’he primary objeptivg of the current manyscript Is to StUdY the
by Gambin and Kronef7] and Boutin[8]. In elastodynamics, blem of secularity introduced by the higher order multiple-

Boutin and Auriault{9] demonstrated that the terms of a highe?Cale approximation of the initial boundary value problem in pe-

X ; o . ‘riodic heterogeneous media. We first consider fast spatial and
g;%e;tf:rffsﬁgavely introduce effects of polarization, d'Spers'éé?mporal scales in addition to the usual space-time coordinates.

There is a substantial number of articles utilizing multiple-scall-eli—gée {gsftgéltng rrlljg-lfjggg np(;ggl:eemo:‘stﬁgos%?utt?ort:ei nh)t/ﬁeerﬁﬁillcc%\}"gg-
homogenlz_atlon techniques f(_)r wave propagation problems in Rhain, while the resulting macroscopic equation is the same as in
riodic media. Most often, a single-frequency tlme-dependenceths !

. o= e classical multiple spatial scale analysis and thus failing to
assumed prior to the homogenization progdsy. A notable ex- resolve dispersion effects. The main contribution of the present
ception is a recent article of Fish and Chdri], which investi-

< . . : paper is given in Sec. 3.2, where we introduce a fast spatial scale
gated an initial boundary value problem with rapidly varying co imed to account for rapid spatial fluctuations of material proper-

efficients by employing the multiple-scale homogenlzatlol s and a slow temporal scale designated to capture the long-term

E)efccha?utquur(ieri Ité’ivsasefgg\;lvnefﬁcheﬁswmee r}'ﬁ?&;gggfgg&gfgﬁng?ﬁ §havior of the homogenized solution. The resulting macroscopic
P g disp  they quations of motion are solved analytically in Sec. 4 for an illus-

row unbounded with time. When the observation time is smajf,> -~ "~ =.

ﬂigher order terms introduce the necessary correction to the le ré\_tlve initial boundary value problem.

ing order term to resolve the dispersion effect. However, as the -

time window increases, the higher order terms become close tofor Problem Description

larger than the leading order term owing to the existence of secu\We consider wave propagation normal to the layers of a peri-

larity. In this case the asymptotic expansion ceases to be valid.ddic elastic bilaminate witll as the characteristic lengtsee Fig.

1). The governing equation for this elastodynamics problem is
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Evpr  Erpo p(Y)Uop,—[E(Y)Ugy] y=0 (7)
from where it can be easily shown thaf is independent of and

7, thus
- Uo=Ug(x,1). @®
For O(e 1) equation we get
p(Y)Uy,,—[E(Y)(UgxtUiy)]y=0. )

Owing to linearity of the above equation, the solutiorutocan
be sought in the form

Fig. 1 A bilarninate with periodic microstructure uy(X,y,t,7)=U(X,t) + M(Y, 7)Uox - (20)
Substituting Eq(10) into (9) yields

where u(x,t) represents the displacement field(x/e) and P(YIM,,,—[E(Y)(1+M )] ,=0. (11)
E(x/e) are the mass density and elastic modulus, respectively;consider the unit cell in Fig. 1. The cell domain consists of
().x and (), denote differentiation with respect toand time, subdomainsA® and A®, occupied by materials tagged by su-

resp.ectivel.y;.and @(a<l.in Eq. (1).is used to express a rapidperscripts 1 and 2, respectively, such that
spatial variation of material properties.

The goal is to establish an effective homogeneous model in AL =[ylo<y<aQ], A@=[ylall<y<(] (12)
which the local fluctuations due to the heterogeneities do not ap-
pear explicitly and the response of the original heterogeneous nigere O<s a<1 is the volume fraction of the unit cell) is the
terial can be approximated by the response of the effective homitit cell domain in the stretched coordinate systgnsuch that
geneous medium. This is facilitated by the method of multipleQ/{)=¢. Since material properties are piece-wise constant over
scale asymptotic expansion. the unit cell, Eq(11) can be written as

_ . . . Mj =My, =0, (=12 (13)
3 Asymptotic Analysis With Multiple Spatial and
Temporal Scales

Under the premise that the composite macro-reference length c1=VEilp1, Cp=vE/p,. (14)
L=\/(27) (N the macroscopic wavelengti[9,12]) is much

where

The boundary conditions for the unit cell problem described by

larger than the unit cell dimensiof, i.e., Q/L=(wQ)/c=kQ
; Eq. (13) are
<1, wherew, k, andc are the circular frequency, wave number,
and phase velocity of the macroscopic wave, respectively, it is (a) Periodicity: u;(y=0)=u;(y=0),
convenient to introduce a microscopic spatial length varigble
such that oo(y=0)=0o(y=0)
y=Xle. )

(b) Continuity: [u;(y=af))]=0, [oo(y=af))]=0
In addition to this fast spatial variable, we will experiment with (15)

vari im | . .
arious time scales where[ ] is the jump operator and

E=eM 4) ;
) ) _ N gi=E(y)(UixtUisgy), i=01,...n (16)
where m is an integer. Since the response quantitieand o

depe_nd orx, y=xle, t, andé=s™, a two-scale asymptotic ex- For simplicity, initial conditions are taken as
pansion is employed: Mi(y.00=M; (y.0=0, (j=1.. (17)

! i We solve the unit cell problem defined by E¢$3), (15—(17)
u(x,y,t,6)= Zo e'ui(xy,4,8), using the method of Laplace transform. The detailed solutions are
" given in the Appendix.
n From the solutions forM(y,7), it can be observed that
o(X,y,t,&)= 2 g'ai(x,y,1,6). (5) M(y,n) consists of two parts. The first part is fast time-
i=-1 independent whereas the second part is fast time-dependent.
The homogenization process consists of inserting the Finally, for O(1) equation, we get
asymptotic expansion®) into the governing Eq(l1), identifying _
the terms with equal power of, and then solving the resulting P(Y)(Uoget Uy Uz ) ~[E(Y) (Uoyt sy .
problems. —[E(y)(Uyx+uzy)],=0. (18)
Following the aforementioned procedure and replacing the spa- iodic functiong= ¢ defi
tial derivative (), by ()x+& (), and the time derivative () . Or a¢-periodic functiong=g(x,yt,¢), we define an averag-

by ()..+&™() ¢, we obtain a series of equations in ascendin'g?g operator

power ofe starting withe ~2. We successively equate the factors
of each of these powers to zero. (9)=— fAQ(X,y,t,f)dY- (19)

1
. _ _ Q) Ja
3.1 Fast Spatial-Temporal Scales. We first experiment ) . .
with the case ofn=— 1. The resulting two time scales are related Applying the above averaging operator to Et8) and making

by use of the solution fou,, we arrive at
g=tle=1n. (6) (p(Y))Uog+(p(Y)Uz,,,) = (E(Y)(1+M y))Ugy=0. (20)
At O(e72), we get We assume that fast time-average
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lim= | u(x,yt,7)dy (21) (33)

T
. o . Applying the averaging operator defined in Ed9) to the
exists and is finite. Following Francfof13], we suppose that  apove equation and taking into account the periodicity-pf we
limsG 22) get the nondispersive macroscopic equation of motio@g),
! which is identical to Eq(23). In order to capture the dispersion
effect, we proceed to higher order terms.

1 JT p(Y)Uo— [E(Y)(UoxtUyy)] x—[E(Y)(Urxt+uzy)]y=0.
0

T

s—0

exists and is finite, wherg; is the Laplace transform af; with o . .
respect to the fast time. Taking the Laplace transform of Eq. 3-2.1 () Homogenization. Higher order correctiony,,
(20) with respect to and performing the averaging in the fast¢an be determined fro®(1) perturbation Eq(33). Substituting

time, we get the macroscopic equation of motiorOgt.): Egs.(30) and(23) into (33), yields
PoUott— EqUoxx=0 (23) [E(y)(UZ,y+Ul,x+NuO,xx)],y=EO[p(y)/PO_l]UO,xx- (34)
Linearity suggests that, may be sought in the form
ElEz Uz(X,y,t,T)=U2(X,t,T)+N(Y)Ul,x+P(y)Uo;<x- (35)
po=(p)=apyt(1=a)py, EO:(l—a)ElJr aE, (24) Substituting the above expression into E84) yields

where

It can be seen that the macroscopic equation of motidd(a?) [E(Y)(N+P )] y=Eolp(y)/po—1]. (36)

is nondispersive. It can be also derived without introduction of the The boundary conditions for the above equation are: periodicity
fast time-scale(see Sec. 3)2 Proceeding with the derivation of 4 continuity ofu, ande, as well as the normalization condition
the higher order terms reveals that the fast time-dependence of b‘%‘y)>=0. Here we only provide general ideas. For detailed so-

displacement field introduces secular term©gt?) and higher. |ution of the unit cell boundary value problem we refer[d].
Hence the fast time-scaling does not capture the dispersion effeghce P(y) is found, we can calculate

3.2 Fast Spatial and Slow Temporal Scales.In this sec- (pN)=0, (E(N+P))=0, (E(Uiy+Uy,))=EqU
. . . h . . ’ Y ’ 1x 2y o~M1x-
tion we experiment with a fast spatial scale aimed at accounting
for the rapid spatial fluctuations of material properties and a slow ) o . )
temporal scale intended for the long-term behavior of the homog-Consider the equilibrium equation &(e):

enized solution. We seleat=2, Le., P(Y) U= [E(Y) (UpxtUzy) ] = [E(Y) (Ut Ugy) 1, =0.
E=et=r. (25) (38)
_ Applying the averaging operator to the above equation, exploit-
2
At O(e "), we have ing the periodicity ofo, and making use of37), we arrive at
[E(y)ugy]l y=0. (26) poU1—EoU1x=0. (39)
The general solution to the above equation is 3.2.2 Q(s?) Homogenization. Substituting Eqs(30), (35),
Yoty 1 and (39) into the O(&) equilibrium Eqg.(38) yields
Up=2ay(Xx,t,7) ——dz+a,(x,t,7) 27
0= Yo E(2) 2l @7 [E(y)(US,y+ PuO,xxx+NUl,x><+U2,x)],y:EO(p(y)/PO_l)Ul,xx
wherea;(x,t,7) anda,(x,t,7) are integration constants. Due to +[EoNp(Y)/ po—E(Y)(N+P y) JUgxxx- (40)

periodicity ofug, a;(x,t,7) vanishes, implying that the leading-

; . Due to linearity of the above equation, the general solution to
order displacement depends only on the macroscale, i.e., y q 9

Us is as follows:

Uo=Uo(X,t,7). (@8)  uy(x,y,t, )= U5t 7+ N(Y) Uyt POY) U1t QUY)Ug -
At the next ordeiO(e 1), the perturbation equation is (41)
Substituting the above expression into ives
[E(Y)(Upy+Uzy)],=O. (29) g P 0 g

[E(Y)(P+Qy)]y=EoNp(y)/po—E(Y)(N+P ). (42)
The above equation, together with the periodicity and continu-

Due to linearity, the general solution af becomes

U (%Y, 6, 7) =U1(x,t,7) + N(y) Uoy - (30) ity of u; and -, over the unit cell domain as well as the normal-
Substituting Eq(30) into (29) yields ization condition(Q(y))=0, fully determinesQ(y). After Q(y)
is solved for, we can calculate
[E(Y)(1+N,)],=0. (31) , .
. . L - [a(l—a)]*(p2—p1)(E1p1—E2p2) EoQd
Equation(31) together with the periodicity and continuity con- (pP)= T20EE . (43)
ditions of u; and oy over the unit cell domain as well as the 2poE1E2
normalization conditioN(y))=0 define the unit cell boundary a(1- a)Eo0)2
value problem, from whiciN(y) can be uniquely determined as (E(p+Q ))=- TO
. ' 0
1-a)(E,—E al)
Nl(y)=w y— — (Ex—Ep[a®p1—(1-a)?p,]+Eqpo
(1*a)E1+aE2 2 (1—a)E1+aE2 —Pof-
«(E1—E,) (1+a)0 (44)
(1-a)Eyt+ak, Finally, consider the equilibrium equation 6f(¢<):
It is interesting to note thak(y) is the same as the fast time- Useet 2Ums T=TE(V)(Us o+ U
independent part dfi(y, ) in the previous section. POYIUzg+ 2Uo; ] = [E(Y) Uzt Usy) .
At O(1), theperturbation equation is —[E(y)(ugx+ugy)],=0. (45)
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Applying the averaging operator to the above equation, taking ICs: £U;(x,0,00=0, &U;,(x,0,00=0
into account the periodicity af; and making use of Eq$43) and '

(44) lead to BCs: €U (0t,7)=0, &U,(l,t,7)=0.
1 Similarly, the macroscopic field?U(x,t,7) is determined by
U2t~ EoU 2= 2 Eqlo o 2P0l (46) equation of motior(46), with initial and boundary conditions for
e2U,(x,t,7) constructed so that the global fieldig(x,t,7)
where +eU (x,t,7) +&2U,(x,t,7), should satisfy macroscopic initial
12 _ 2 2 and boundary conditions.
Ed:[a(l C;)] (E1p1~Ezp2) EOQ ) 47) With this in mind, we obtain the initial and boundary conditions
12p5[ (1 - a)E;+ aE5] for different order equations of motion
E4 characterizes the effect of the microstructure on the macro- ICs: Up(X,0,00=F(X), Ug(X,0,00=q(x)=0
scopic behavior. It can be seen that it is proportional to the square ’
of the dimension of the unit cefl. For a homogeneous material, Ui(x,0,00=0, U;(x,0,00=0 (i=1,2 (53)
a=0 or«=1, and in the case of identical impedance of the two ) )
material constituentsr &z, /z,= 1, z= JEp), Eq4 vanishes. BCs: Uj(0t,7)=0, U (l.t,7)=0 (i=0,1,2.  (54)
Remark 11n absence of the slow time-scale, the Macroscopic from the above equations of motion and initial boundary con-
equation of motion aO(¢”) is ditions, we can observe that
1 Uy (x,t,7)=0. 55
pOUZ,tI_ EOUZ,XX:? EduO,xxxx~ (48) l( T) ( )

We note that for the multidimensional cadg may not vanish.
In Sec. 4 we will show that the solution of this equation introtn generalU; will vanish provided that the material is macro-
duces secular terms. scopically isotropic.
Remark 2 Alternatively, we could have consider slow time scal-
ing with m=1, i.e., {=¢t={. The homogenized equations of
motion in this case are

pPoU1—EoU1xx= —2poUogs (49)

3.4 Nonlocal Macroscopic Equations. We define the mean
displacementJ(x,t) as

U(x,t) ={u(x,y,t, 7)) =Ug(X,t,7) + U (X,t,7) + £2U5(X,t,7)
+ ..., (56)

1
poU o — EoUz,xx=;EdU0xxx_ 2poU 14~ pologs - (50) Combing the macroscopic equations of moti@3), (39), and
o ) (46) and neglecting the terms higher th@{e?), we obtain the
It can be shown that in this case the forcing term ¢£Xnac-  equation of motion for the mean displacement
roscopic equation vanishes, and consequently this scaling does not

lead to meaningful results. PoU—EqU 1 EqU =0 (57)

3.3 Summary of Macroscopic Equations. In this section whereU=U . is the second-order full-time derivative. The above
we summarize various order macroscopic equations of motiequation is fourth-order in space. It necessitates four boundary
which have been derived in the previous section and prescribenditions to define a well-posed boundary value problem. How-
initial and boundary conditions. ever, for the problem under consideration, there are only two

The macroscopic equations of motion are physically meaningful boundary conditions for the mean displace-
ment. Equation(57) is often referred to as a “bad” Boussinesq

O(1): poliog— Eoloxx=0 (23)  equation(ct. [14.15).
O(e):  poUi—EoqU1x=0 (39) The “bad” Boussinesq equation can be reformulated as
’ ’ “good” Boussinesq equatioif14,15) by exploiting the approxi-
5 1 mation
O(&%):  poUzy— E0U2,xx=; EdUoxxx— 2polUos-  (46)
_Poy 2
We consider the following problem: a domain composed of an U~XX*E_OU +0(e%) (58)

array of bilaminates with fixed boundaryat0 and free bound- . .

ary atx=| subjected to an initial disturbandéx) in the displace- Which yields

ment field. At O(1), the displacement field is determined by Egp

equation of motion(23) and the following initial and boundary poU—EqU %U’XXZO. (59)
conditions: 0

. _ _ _ The above equation is second-order in space, therefore the two
ICs: Ug(X,0.0)=1(x),  Uo(x.00=0(x)=0 (51) physically meaningful boundary conditions are sufficient to define
BCs: up(0t,7)=0, ug(l,t,7)=0 (52) awell-posed initial boundary value problem. Similar equations to

57) and(59) arise in fluid dynamics of shallow water theory and
The calculation of the field U,(x,t,7) is performed by solving f:r;)stal-la(ttic)e theory. y y

equation of motion39). The initial and boundary conditions ap-
plied to eU4(x,t,7) must be such that the global fielgy(x,t, 7)
+eU;(X,t,7) meets macroscopic initial conditions and conditions

imposed on the boundary, i.e., 4 Solution of Macroscopic Equations
Uo(x,0,0) + £U1(x,0,0)= f(x), We begin with the zero-order equation of moti@8) and em-
ploy separation of variables to solve for this initial boundary value
Uor(x,0,00eU14(x,0,00=q(x)=0 problem. Let
Ug(Ot,7)+eU (0, 7)=0, ugy(l,t,7)+eUy,(l,t,7)=0. Up(X,t, 1) =X(X)T(t, 7). (60)
Taking into account Eqg51) and(52), the initial and boundary ~ Substituting the above equation int®3) and dividing by the
conditions foreU(x,t,7) are productX- T yield
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1 62T X" Likewise, differentiating the second equation(#i) and insert-

T2 —CZY =—p? (61) ing the first equation into the resulting equation yields
wherep is a separation constant and £*S1(7) + wSy(7) =0. (73)
c=Eq/po. (62) Solutions to(72) and(73) are
The resulting differential equations and corresponding solutions Rn(7/e?)=d; Sin(w,7/£?) +d? cog w,7/&?)

are .
) S\(7/e2)=d3 sin(w,r/e?)+d, cod w,7/£?) (74)
T
— +p?T=0, T(t,7)=S(7)sin(pt)+R(r)cogpt) (63) whered,, d,, d;, andd, are constants of integration. The above
at solutions must satisfy71). Inserting(74) into (71) gives
2 X X _ _
X"+ %X=O, X(x)=h, sionJrhzcosp? (64) di=—ds, dp=ds. (75)
) ) Substituting Eqs(74) and (75) into (67) and utilizing initial
whereh; and h, are integration constant§(7) and R(7) are conditions yield
undetermined functions. Substituting the above solutions into the

boundary condition$54) gives 2 (! (2n—1)mx

d,=0, dzanzl— f(x)sdex (76)

| 0

h,=0, hy cosp— =0 (65) ] ] ]

c and thus the dispersive solution up to the second-order, denoted
The second condition in the above equation leads to here asy(x,t,7/%), is given as
mc - CpeX T
pa=(2n—1) 5, (n=123...). (66) Ug(x,t, /e2)= D, Bysin=-co§ w——pit|.  (77)
n=1

Due to linearity of the differential equation, the total solutior function evaluation we insetts #/&2 which yields
can be written as the sum of individual solutions, i.e.,

. PnX u xt)—i B sianco E(&)2—1
UO(thvT):nZl Sin%[Sn(T)Sm(pnt)+Rn(T)COS(pnt)]- dXD = 2y BasinTg 2B\ ¢

pnt] . (78)

(67) Remark 3In absence of the slow time scale, the forcing terms in
Inserting the above solution into the second order macroscoﬁe' (68) cannot be set to zero and hence, the solutiod £0x,t)
equation of motior(46) gives il contain sgcular terms, which grow linearly Wlth time. It has
been shown in absence of slow time scalidd] higher-order
- Pn . PnX s_olutio_n provi_des a reasonable approximation provided that the
Uzvn—CZUZXX: E TsmT time window is very small.
n=1 Remark 4 The solution of the “good” Boussinesq E¢59) can

Eq [pn)2 also be found by separation of variables and is given as
n , .
X[ 2_(_) Sn(7) +2¢Ry(7) sin(pyt) -
&Pl C PaX Pnt
Ey (p,)® U(x,t)=2 B, sinTco | (79)
d n , n=1 EqlPp
[ e =g
o\ C
68
(68) Using the binomial expansion
The forcing terms in68) are solutions to the associated homo-
geneous equation and will generate secular terms. In order to 1 Eq (pn\2 3E3 (p,\*
eliminate the secular terms and avoid unbounded resonance of —2:1— — = — | = -
U,(x,t,7), the forcing terms are set to zero, i.e., L E(&) 2B\ C 8Ep \ €
E 3 Eo C
8—%(%) S,(7)+2¢R(7)=0, (80)
0
It can be readily observed that solutiof¥8) and(79) are iden-
5 tical up to the second-order accuracy.
Eq [Pn , Remark 51f we supplement the “bad” Boussinesq problgsi’)
=2po (?) Rn(7)—2¢5,(7)=0. (89)  with two boundary conditions
Let Uyx(0)=0, U x(l,1)=0 (81)
=T (pn ® [(2n-1)7]’E4 -0 satisfying(78) the solution can be found as
wn_cho ? B 16p0C|3 ( ) o p % E p 5
. d
then Eq.(69) can be written as U(X.t):z1 B, sm% cos{ 1- E_O(?n) pnt]. (82)
e

2R — 2q/ _ —
SR+ @nS(1) =0, &"S(7) ~@nRa(1)=0. (71) Even though the binomial expansion @2) up to the second-
Differentiating the first equation iG71) and inserting the sec- order can be shown to be identical {@8), the above solution is

ond equation into the resulting equation lead to considered to be “bad” since the higher order terms in the Fou-
- ) rier series result in a negative term under the square root of Eq.
&"Ry(7) + w;Ry(7)=0. (72)  (82) giving rise to physically meaningless solution.
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Fig. 2 The initial disturbance in displacement with different

half-pulse widths

5 Numerical Results

employ an explicit time integration scheme to solve the source
problem in a heterogeneous medium. We consider the following
initial disturbance in the displacement field:

f(x)=foaox— (Xo— &)1 Ix— (Xo+ 8)1{1—H[x—(xo+ &)1}
X[1=H(Xg—6—X)]

where a,=1/8% and H(x) is the Heaviside step function;
fo, Xo and & are the magnitude, the location of the maximum
value and the half width of the initial pulse. Several pulses
with fo=1m and different half-pulse widthg, are plotted in
Fig. 2.

It can be seen that this pulse is similar in shape to the Gaussian

To assess the accuracy of the proposed model, we construéligiribution function. Substituting the initial disturbantix) into
reference solution by utilizing a very fine finite element mesh arffq. (76) and integrating it analytically, yields

=30m
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Xot o

Tf foagx—(Xq
Xg— 0

X[x—(Xo+ 5)]4sin(

~ 49152%f,
S 82n-1)7)°

-9

2n—1)mx d
21 X

[[16804— 180((2n—1)78l)>?

=5500 Kg/n? andE4=1.76x 10" N. In this caseE, /E,=20 and
the ratio of the impedances of the two material constituents is
=7.30. The initial pulse is centered at the midpoint of the domain,
i.e., Xo=20m, with the magnitudéy,=1.0 m.

Figures 3-5 show the evolution of displacementsat30 m
for different values of pulse widthd=1.4m, §=0.8m, andé$
=0.6 m, respectively. The corresponding ratios between the pulse
width and the unit cell dimension &, are: 14, 8, and 6, respec-
tively. In each of the Figs. 3-5, there are three responses in each

+((2n71)7r5)4]sin(2n71)7rxo sin(znil)ﬂé graph (a)—(c), which correspond to the reference solution of the
2| 2] source heterogeneous problem, the analytical nondispersive solu-
3 3 tion ug(x,t) obtained by the classical homogenization and the
+[20((2n—1)75)°—8402n— 1) w4l”] analytical dispersive solutiong(x,t).
(2n—1)mx, (2n—1)wé The dispersion phenomenon can be clearly observed from Figs.
X sin cos ] 3-5. In the low frequency case, depicted in Fig. 3, the pulse
2l 2l almost maintains its initial shape except for some small wiggles at

We choose material properties &s=120 GPa,E,=6 GPa,
p1=8000 Kg/n¥, p,=3000 Kg/nt, and volume fractione=0.5.

the wavefront. In this case, the zeroth-order homogenization pro-
vides a reasonable approximation to the response of the heteroge-

The dimension of the macro-domain and that of the unit cell areous media. However, when the pulse width of the initial distur-
set ad =40 m and(2 =0.2 m, respectively. The homogenized mabance is comparable to the dimension of the unit cell and the

terial properties are calculated a$,=11.43GPa, p, observation time islarge, which are the cases shown in Figs. 4 and
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Appendix

3
3 Solution to the Fast Time-Dependent Unit Cell Problem
x Here we give the final results and omit all the details of the solu-
2 tion by the Laplace transform.
g
3 (1= a)(Eo~ Ey)(y— afd/2)
6 (1-a)E;+aE,
8 65 7 75 8 85 9 9.5 x10” 0 ”
Time (sec) + ﬂ 1— E) 2 Wl()\ln) 3201)\1”77
0.8 —r ; . . : : 4 Ei/n=1] Gi(A1n) aQ)
e == Uy o = Uy —— Reference
g 08F 280=6 1 Wi(N2n)  2CiNon7m
% - COS—— (83)
o ] Ga(N2n) aQ)
]
g N
2 a(Ei—Ey)[y—(1+a)Q/2]
g Ma(y, 7)=
2 (1- a)E;+ aE,
002 o021 0022 0028 0026 0025 0028 aQ) 1- E D Wa(A1n) CO°2C1MM
e ee 417 EJF[Gi0u) o)
05 ——
S— - - —-UY — Reference
£ Y0 d W, (N 2Cq\
s 282 =6 I 2(N2n) cos 1 A2n7/ (84)
x Ga(N2n) al)
% ol where
g .
2 1 . 2ny  2h(y—ad)
& v W (N)=sin(2u\)| cos———cos — +k[cog2uN)
st a af)
0.047 0.048 0.049 0.05 0.051 0.052 0.053 0,054 0.055 0.056 0.057 .
Time (sec) C2NY . 2Ny—aQ)
—1]| sin——+sin — (85)
Fig. 5 Displacements at x=30m for the normalized pulse al) al)
width 2 6/Q2=6 ) )
2uN(Q—y) 2uN(y—afl)
W,(\) =[cog 2n)— 11 sin 22X Y gint 3 :
(1-a)Q) (1-—a)Q)
5, the wave becomes strongly dispersive and the zeroth-order ho- N N
mogenization errs badly. It can be also seen that our dispersive T Kksin(2)) COOZW‘(Q_V)_COGZW\(Y_“Q)
model is in good agreement with the reference solution of the > (1-a)0 > (1-a)0

heterogeneous medium.

(86)
Gy(N)=N?[k sin\ cog u\)+cosh sin(u\)]
6 Concluding Remarks 3{ [k COS\ Cos \) — sin sinu\)]
Homogenization approach with multiple spatial and temporal ) )
scales have been investigated for a model problem. This work is —[ksin\ sin(u)\) —cos\ cog u\)]} (87)
motivated by our recent study11]) which suggested that in ab- N 21 .
sence of multiple time scaling, higher-order homogenization Go(M) =N sink cos k) -k cosh sin(uh)]
method gives rise to secular terms which grow unbounded with X{u[—ksin\ sin(u\)+cosk cog u\)]
time. In the present manuscript we have experimented with vari- i _
ous multiple time scalings. +[k cosh cog ) —sink sin(uN) ]} (88)
We have found that the combination of fast spatial and slow A
temporal scales successfully captures dispersion effects. This de- | _ ¢iEp _ VE2p2 _ isaf) _ (1-a)cy (89)
velopment serves as a model problem from which we will extend CE1 JEp; 2c, '’ K aC,

to the general multidimensional cases in our future work. In the

general three-dimensional case, the unit cell boundary value probA1n @nd A2, are the roots of

lem and macroscopic initial boundary value problem subjected to F,(s)=sin\ cog u\)+k Cos sin(u),
the secularity constraint will be solved using the finite element

method. Fo(s)=ksin\ cog w\)+Cos\ sin( wh),
respectively.
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Transient Green’s Function
Behavior for a Prestressed Highly
L.m.erock | Elastic Half-Space

Fellow ASME,

Mechanical Engineering, . . . .
University of Kentucky, A plane-strain study of a prestressed isotropic compressible neo-Hookean half-space

Lexington, KY 40506 subjected to shear and normal surface loads is performed. The loads are either stationary
and applied for an instant, or travel at an arbitrary constant speed. The transient process
is viewed as the superposition of infinitesimal deformations upon large, and exact expres-
sions for the displacements, within and upon, the half-space are obtained. These, and the
associated wave patterns, demonstrate the anisotropy induced by prestress. The wave
speeds themselves are sensitive to prestress; in particular, Rayleigh waves disappear
beyond a critical compressive prestress. A critical tensile prestress also exists, beyond
which a negative Poisson effect occurdDOIl: 10.1115/1.1357167

Introduction components ofT’ in the principal reference system, i.eB

Wave propagation in prestressed solids has applications fodiag\?\5\3} where\, are the principal stretches and
seismology, nondestructive evaluation and material characteriza-  , ~, 5 2 2, 2 2, 22 BN
tion ([1]) and, when the solid is highly elastic, finite deformations I=A1+N2+A5 H=NAZFAAI+HRAG, HE=NIAGAS,
due to prestress can noticeably affect wave propagation properties 3)
([2]). A convenient approach to the study of this situation is tean be written as
view the deformation triggered by wave-inducing dynamic load-

ing as infinitesimal, and to superpose it upon the existsigtio TI, Ng+2puyy Ao M3 Hy,
deformation due to prestress. T = AL Nyt 24 N H

This approach, which allows the use of results by Green and | _?* 2 22° =22 z sz
Zerna[3] and Beatty and Usmafu], is employed in this article to Tas N3y N3 N3zt 2us3 33
examine plane-strain transient Green’s function problems of loads (4a)

applied to the surface of a prestressed isotropic compressible neo- T H r T Bl H '
Hookean material. Shear and normal stationary loads that are ap- 12~ MaH a1t 12, 23= BaH 3ot pagHas,

plied suddenly, and those that translate at constant speeds over the Th = ! Hoak o H (4b)
surface, are both treated. In the latter case, the speed can be any 317 M1ga3™ Marian
finite constant value, i.e., can be sub, trans or supersonic. In (4), (N, piy) are the generalized Lame’ constants defined
by
. . _ 2 _ 2 o 2
Basic Equations Iii=TiN;, TH=Tin5,  Ti3=Tia\3 (5)

Consider an elastic bodR that is homogeneous and isotropicwherei =(1,2,3), the symbol’ represents eithex or u, and
relative to an undisturbed reference configuratign A smooth

motion x=x(X) then takesk to a deformed equilibrium configu- —, _@ 2@ 4& == 2432
ration «. Th((a C):auchy stresE in « is q ? 2 Mk ONE N ONg A gNZ ' Mk art @A+ M.
ax (6)
T=al+a;B+a,B?, B=FF', F= X 1) In k incremental traction boundary conditions on a surface with
outwardly directed normai can be written in terms of the vector
where (ag,aq,a5) are scalar-valued response functions of the () _ ,
principal invariantgl, II, 1) of B, and body forces are absent. As tW=T'n+Tn(n.Hn)—TH'n )
noted in[4], experimentally based inequaliti€iS]) tend to sup-  Finally, becausex, is a homogeneous configuration, the incre-
port the restrictions mental balance of linear momentum reduces/ &)
ao_” QZSO, a1+|a2>0, (12$0. (2) dIVTr:pu (8)

An adjacent nonequilibrium deformed configuratieh is ob- \herep is the mass density, | denotegabsolute time differen-
tained by superposing an |nf|n|t¢5|mal d|spla_1<_:em_enwh|ch de- tiation, and a Cartesian basis is understood.
pends onx and time. This requires an addition@hcremental
Cauchy stres§'=T* —T, whereT* is the Cauchy stress ir*.
To the first order in the displacement gradiétit=gu/dx, the ) )

Compressible Neo-Hookean Material

Contributed by the Applied Meclhan'ics DIVISIOn OHE AMERICAN SOCIETY OF Consider a Hadamard material which is characterized by the

MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED response functions
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Fig. 1
loading

Isotropic compressible neo-Hookean material in axial

where @, ,b,) are material constants such thgt=a,—u®, © is
the shear modulus, ar@i(1)=0. Settingb,=0 produces the sub-
class of isotropic compressible neo-Hookean matefjidls, and a
simple example of this arises when the form

1
G=u| —— 10
M N (10)
is chosen. This reducd9) to the one-parameter model
M M
ao——m, afl—\/l—_l, ap= (11)

that satisfies the restrictiorig). For illustration, consideR to be
a cylindrical bar of circular cross-sectional again «, which is
placed in a deformed equilibrium stakeunder the uniaxial load
P. If the bar axis is aligned with th¥,-direction, then the Cauchy
stresses inx are

P .
Tllzzv Tpo=Tg3=0, Ty=0 (i#k) (12)
where A is the cross-sectional area ¥y and uniform stress is
assumed. Becaus€ are the principal directions with stretches
and\,=\3=\t, Egs.(2), (3), and(11) combine to give

P 1
T 32—
I (1)
1
Np= - (130)
1

BecauseA= )@A0 for homogeneous deformation and =1
+e;, wheree; is the axial unit extension of the bd#,3a) can be
written as

P 1
A, M 1+e- Wﬁ} (14)

Equation(14) relates a first Piola-Kirchoff stress to unit exten-

sion, which is a standard objective of the simple tension(fé$t

A schematic of(14) is given in Fig. 1, and the effective Young's
modulus and Poisson’s raticef, v¢) follow from (13) and the
slope of(14) as

A—1 (1+e)¥4-1

M-l e(l+e)¥?
(15)

E¢=pu

3
1+ 2(1+ey)” } V=
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Clearly E°— u for large extensions, bu®— 2.5u when they are
small. This smalle;-behavior corresponds to a Young’s modulus
in an isotropic linear elastic solid with Poisson’s ratio 1/8])
and, indeedy® in (15) takes this value whea;— 0.

Suddenly Applied Stationary Load Problem

ConsiderR in «, to occupy a half-space defined in terms of
fixed Cartesian basis as the regi¥p>0. The smooth motion

Xl:)\lxl, XZZ)\2X2, X3:X3 (16)
then takesR to the plane-strain equilibrium statedefined as
Tll: ag, T22:0, )\3: 1 (17)

whereo is a known constant stress. The regiBnnow occupies
the half-spacex,>0 and ,\,) are principal directions and
stretches. For the compressible neo-Hookean mddgl Egs.(1),
(3), (16), and(17) combine to give

1 o \?
)\ZZW, )\l:w)\z, (UZE 1+ ﬂ (183)
101 ,

Ta=p \/—;*; » T=0 (i#k) (180)

where 0Kw<1(oc<0) and w=1(0c=0). Equations(16)—(18)
describeR in «.

For any superposed infinitesimal deformatier «* the incre-
mental stresses are given B4§) where, in view of(5), (6), (17),
and(198),

2 1

’ 2 ! ! /L !
Mk:l/«(;_w): M= BT AT | o o

(1%)

il

M= M, fgz= N (1%)

Herek=(1,2,3) and it is noted that all the constants(1®) are
positive so long as

. (20)

0<w<Vv2 ( (r<i
V2

In this instance the superposed infinitesimal deformation pre-
serves the plane-strain nature ofoy the application of surface
shear and normal line loads aligned parallel to xhedirection.
Application takes place for an instant at;(x,)=0. This is de-
picted schematically in Fig.(2), where(S, N) are the shear and

—
) N&(s) * N
S6(s) S
[ Tx X /
R / \ CS 2
y y
(@ )

Fig. 2 (a) Stationary loads suddenly applied to surface,
surface loads translating on surface

(b)
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normal load magnitudes, ang{ ) represents the Dirac function.
For convenience the variabe=v, X (time) has been introduced,

where
-\
' P

(21)

. p ~

= — PaX
F o f FeP9dq. (28)

In (27) the variablep can be taken as real, positive and large
enough to guarantee existence (@f7a), while q is in general
imaginary. In(28a,b), the integrations are taken along Bromwich

is the classical[7]) rotational wave speed. Similarly, the variable§Ontours in, respectively, the compipandg-planes. Application

(%, y) are introduced in place ok{,x,). The boundary conditions
for R in «* alongy=0 are

ty?=0, ti?=S8x)8(s), ty ?=Né&(x)8(s). (22)

Because the process is plane-strain, the superposed displace-

ments are (; ,uU,), and depend only ofx, y, ). Thus, in light of
(4), (8), and (19), the relevant field equations in>0 for the
superposed deformation are

of (27) to (23) in view of (24)—(26) reduces the superposed de-

formation problem to two coupled linear ordinary differential

equations iny>0 that can readily be solved to yield the double

transforms

wpU=A(q)e P+ B, (q)e” @PbY (29)

for y>0. Herek=(1,2) and the A,,B,) are given by

2gb b
10 (2 # P 2 5u, Al(q)=E TNiS), B,(q)=— = (JwTS+2qgaN)
St =t | —|ut — =0 (2%) R Jo R
w dy w JxXs ds w JIXdy (30a)
2 ‘92u1+(3 i + > 2) 0 (2%) a 2qa
_— R — —— —5 U=
waxay \way? Pax? gs?) 2 Ay(Q)= = (2gbS— VwTN), lgz(q):E T+ 228\ ,
- R R Vo
where the nonzero elements Bf obey the constitutive formulas (300)
iT’ _ E+ EJF 2 joup 1 1dup 30Uz where the definitions
w Yle @ % P ' u ? wdix oy
) vda=\1-¢’c% b=\1-0°¢ (31a)
1 2 1 \(ou @ 1 u, 140 T=1-q ot |, T 1+2(1 ) (31b)
u u u u =1-9°| w+ —]|, = —w
o (_1+_2), Lo e, 1o et g To=ltat
)2 0} \/; ax ay 22 X w Yy
(24b)

Equation(24a) indicates that extensional strain associated with

the x-direction is independent of transverse loading when
achieves the critical value defined 30). For » exceeding this
value, (243 implies a negative Poisson effect. Equati@d) as a
set also show thatTr and tH are not proportional. This indicates

Toa+

R:iqzab+T2:§(b—a) bz—iq2 b| (31c)
) 2 3w

hold, and the dimensionless constants

/ 2
Cp= \/5, Ca= w+ ;>Cb

(32)

the typical([3,4]) result that the superposed deformations are gov-

erned by equations analogous to those for an anisotropic bogfine the effective dilatational and rotational wave speeds

even thoughR in «, is isotropic. (v,Ca,v,Cp), respectively, in the-direction. To ensure bounded-
The boundary conditions along=0 for the superposed defor- ness of(29) in y>0 we require that Re(b)>0 in the g-plane

mation can in view of7), (17), and(18b) be extracted froni22)
as

Ju
Ti— "a_xz =S8(x)8(s), Th=N&(x)8(s) (25)
while the initial (s<0) conditions are
M) g 26
U, —o | = (26)

and k=(1,2). In additionu, should be bounded agx*+y?

with, respectively, the branch cuts Ig)E0,|Re@)|>1/c, and
Im(g)=0,|Re@)|>1/c, . The first expression ifB1c) shows thaR

is a form of the classicdl7] Rayleigh function. The second ex-
pression is less common, but demonstrates in vie8t#&) and

(32 that a Rayleigh function arises in a sense because of the
existence of two body waves. In either form, it is analytic in the
g-plane with branch cuts Imf=0,1k,<|Re(@)|<l/c,, and ex-
hibits the rootsq= = (1/c,,1/cg), where

1
Cy= w— ;,

(331)

—oo, y>0 for finite s>0, and should be finite and continuous

everywhere except perhaps aty)=0 and certain wavefronts.

Integral Transform Solution

To obtain the superposed displacements, the unilat8taind
bilateral[9] Laplace transforms

)
I

F=| Fe Puds, (279)

F Fe PaXdx

(27)

are introduced, along with their corresponding inverse operators

F

1 .
— PS
27_rifFe dp, (283)
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1
w+ —
w

1— —
V3

It can be shown that it is the last factor in the second form for
R in (31c) that exhibits the roots associated witB3b), while
those associated witf83a) are roots of both the first factor and
the termT,. For (ZW3—1I<w<v2 it can be shown that €cg
<cp, i.e., v,Cg is the Rayleigh speed i*. For O0<ow
<2ZW3—T1, howevercy is imaginary, and so has no meaning as
a wave speed. In view @f.8), this implies that Rayleigh waves do
not exist for prestresses

o<—2u(V3-1)y2NM3+1.

For O<w<1(0<0) c, is also imaginary, while for ¥
<V2(0<o<ulv2), we have B<c,<cg. In either case, when

Cr= (33)

2)'

(34)
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g=*1llc,, b=a and (29 exhibits the numerator factor,— 0.
That is, (29) itself has no pole associated wifB3a), and that \

value plays no role in solution behavior.

Rayleigh waves in prestressed media have been considere
([10,11)), and the vanishing of the Rayleigh speed has been inter
preted ([11]) in terms of the instability of the homogeneously
deformed configuration. In what follows, therefore, prestress is
restricted by(20) and (34), i.e., to the range between Rayleigh
wave annihilation and the negative Poisson effect.

Fig. 4 Wave pattern

General Transform Inversions
Operation on(29) with (28b) gives the unilateral transform

V3H(s—s,)

1 = 1 = —
= =— Ak(q)ep(qx—\sway)dq_,_ Bk(q)ep(qx—vwby)dq u.=Rd a A
mul=Rga(g,)A(da)] -

- 2i 2
(35)

H(s—sp)
+Re[b(qb)Bk(qb)]m
b )

wherek=(1,2), and the analyticity of both integrands allows the
entire Im@)-axis serve as the Bromwich contour. For theterm,

integrand decay is exponential fog|—c in the left and right- H( ; )
hand halves if theg-plane for, respectivelyx>0 and x<O0. As=s) oy
Qauchy theory can then be used to switch integration to the Cagn- Imb(cn) Bi(an) ] cbw/sﬁ—sz H(s=sn)| x> V2
iard [12] contour (38)
® r
r2q.=rx= iyca\g N sa=c—a, for y>0, wherek=(1,2). In(38)
a

1 da=9-(S) (3%)
ra=\/X*+ 3 wC2y? (36)

. b
parameterized by the positive real variabes,. The schematic roan= _SX'Hbe\/;VSZ_ng Sb:C_1 rp= X’ + wcgy?
in Fig. 3(a) for x>0 shows that.. define the branches of hyper- b (3%)
bolas with, in light of(32), asymptote slopesyc,c,/v3x and
the interceptg= —x/c,r, which always lies between the origin

and the branch pointsq=—(1/c,1/lc,) of (a, b). The 1
A-integration can now be written as rpan=—sx+ycy\wysp—s?, Sh:C—a(X+‘/7Y)- (3%)

iRefwa(q )A(G )memrm 37) As indicated by the curves in Fig(l8, g, for x>0 defines the
™ 0 T CaVTP—52 upper half of the branch of a hyperbola in theplane with as-
ymptote slopecpy/x and interceptq= —x/cur,. The intercept

whereH() is the Heaviside function. In view oR27a), (37) is ~@lways lies between the origin and the branch pqiat—1/c, of
precisely the unilateral transform operation on the integrand, 8oPut for a given locatiorix, y) may (broken line in Fig. 80)) or
that its inverse follows by inspection. A similar approach can b@ay not(solid line in Fig. 3b)) lie on the branch cut od. In the

used for theB,-term in (35), with the result former instance, the additional integration path parameterized by
gy is required. This explains the two contributions frdsp to
(38).

In light of (36), (38), and(39a), the A -term is dilatational in
nature, and occurs in the outer expanding semi-elliptical region in
Fig. 4, while (38) and (3%) show that theB,(q,)-term is a rota-
tional signal, and occurs in the inner expanding semi-elliptical
region in Fig. 4. These shapes are manifestations of the anisotropy
of the superposed deformation. The disturbances due to the
By (gp)-term in (38) are the headbow) wave contributions, and
occur in the wedge-shaped regions in Fig. 4.

Re(q) Surface Behavior

Application of Cauchy theory whep>0 does not involve the
roots of R because they lie on the branch cuts(af b). As y
—0, however, the Cagniard contours in Figa,3) collapse onto
(@) ® these cuts, thereby requiring that they be augmented with semi-
circular paths of vanishingly small radius that are centered at the
Fig. 3 (a) Cagniard contour for A ,-terms in displacement, (b) root locations associated witt33b). The results fory=0 when
Cagniard contours for B -terms in displacement x>0 then follow as

Re(q)
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s 4aqu2H x\ S JopT? X
e N A MR A A= R
N 2abqT ( x) (x )
— s— —|H|—-—s
mx D Ca Cp
N 3w 5( x) (40a)
7 slsm 2
42-V3(w?+3) | Cr

NJEaTZH( x) N4a2,8q2H(S x)

M=o M) T ep N
S 2abqT x) ( )
-— s— —|H|——s
mX D Ca Cb
;3 3e 5( X) (400)
—_—— S_ —
4 2—v3(w?+3) Cr
In (40), (b, T) are defined in(31), but now
s
a=—. Va=\o’ci-1, B=\oci-1 (41)
2q2 5 4q2
D—(T—T)(T—W (41b)

The third terms in botti40a,b) represent in view of Fig. 4 head
wave contributions, while the first and second terms are, respec-
tively, dilatational and rotational in nature. The last terms repre-
sent propagating Rayleigh wave spikes. Rayleigh signals are also

manifest in the otheS (shear forcgterms foru; andN (normal

force)-terms foru, as propagating singularities. Such behavior is

analogous to that for a linear elastic solid]).

Translating Surface Load Problem

In this instance, the superposed infinitesimal deformation
triggered by shear and normal surface line loads that are applie
(X1,X2)=0 but translate over the surface in the positiv
X4-direction with a constant spead The process is illustrated
schematically in Fig. @). Other than replacing the boundary con

ditions (25) with

, ﬂuz
T—o——

SO X T, N5( X 42
ax S0sTg) TamNo[smg)  (42)

the analysis of this problem is essentially the same(4R) the
dimensionless sliding speed

(43)

is introduced. In view of27a,b) it can be shown thaR9) need be
modified only by dividing its right-hand side by(q+ 1/c). So

V/&%]T

(c>c,)

Iy
®)

Fig. 5 (a) Wave pattern for transonic load speed,
tern for supersonic load speed

(b) wave pat-

Vv3dr

CaVT2—S2

7T,LLLIk=RefS a(qa)Ak(qa)

% ot E
+Refs b(gp)Bk(dp) dr
s 1 cpr-sb

+
ch

. be b(dn)Bk(an) H(s— T)dT(|X|>w_2y)
1 cpysi-72 V2
C

gt

(44)

where it is understood that integrals vanish unless the upper limit
exceeds the lower. Here=(1,2), (A¢,By) are defined by30)

(fj;\%d(Sl) and the integration variablereplacess in (39).

3 he disturbances associated wifl#) also occur in the expand-

‘?ng regions depicted in Fig. 4. Wheri>c,, however, an inte-

grand pole ag= —1/c lies between the branch poigt —1/c,

and the origin. Depending upon where the locatigny) places

the intercept of the Cagniard contour in FighB application of
Cauchy theory may fox>0 now have to include the effect of a
residue. Thus, for@>cy,,cx>cyrp) the term

TR

must be added t¢44). Similarly, for (c>c,,cx>c,r,) the term

A 1 H X \/; 1 Cg
dgMsTe VY Nite
must be included. As indicated by Fig(a b) the contributions

(45) and (46) represent, respectively, rotational and dilatational

disturbances generated in expanding wedge-like regions when the
surface loads translate with trans and supersonic speeds. These

(45)

(46)

long asc<cy, therefore, the inversion process proceeds as bdisturbances are discontinuous along their fronts, and their evalu-

fore, although the factor f/implies integration with respect ®
The result is that foy>0
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ation is relatively simple because, as seerf3h), the quantities
(9, a b, T, R) are purely real.
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Surface Behavior for Translating Loads
Ca +3.0

As in the stationary load case, the Cagniard contours collapse
onto the branch cuts @&, b) wheny=0, and adjustments for the
singularities aig= = 1/cg must be made. In this instance, the re- +2.0

sults fory=0, x>0 are 2 ) —
W=_[—=—
S (s 4ab?? S (s JwpT? ( V3 ) /
,uulz—ﬁ — 71 dT-FH ——dr (ot _____L—-———‘/( ﬁ)
x/cy - xlcy - =
\/ZDquC Dla+¢ . | ‘CR B P
T T T T -
N (%% 2abqT 3.0 20 1.0 |0 1.0 u
— ——H(s—7)dr | |
X XIXq D q+ = 2 1
c -2(3-1) T+1 5
N 80 e H( x)+A( 1) 3 2
—_—— Sf — —_——
4 2—\/§(w2+ 3) Cg—C Cr ! c Fig. 6 Nondimensionalized wave speeds versus prestress
X 1 X
><H(s— E)(c>ca)+B1 — E) H(s— E)(c>cb)
(47a) Som-e Cc?mments . - |
This article considered a transient plane-strain Green’s function
N (s JwaT? N (s 4a?Bg? problem of shear and normal line loads applied to the surface of a
Muzzﬁ , T 1\ T X , —7——dr prestressed highly elastic half-space. The loadings were either sta-
X ca‘D( g+ —) X% [wD g+ — tionary and applied for an instant, or translated over the surface at
¢ ¢ an arbitrary constant speed. The prestress was aligned with the
S (X% 2abqT half-space surface, and could be either tensile or compressive,
— —f —1H(s— 7dr while an isotropic compressible neo-Hookean material served as
™ Jica q+ = the half-space.
c Following [3], the problem was viewed as the superposition of
infinitesimal deformations triggered by the surface loading upon
4 § 3w CrC Hlse Xleal -2 (perhapsfinite deformations engendered by the prestress. Results
4 2—V3(w?+3) Cr—C Cr 2 c by Beatty and Usmarii4] were used to formulate the problem,

and exact solutions obtained for both deformations. In particular,
X 1 X integral transform and standati2] inversion methods were used
5% (C>Ca) + By — c/H|s— E) (c>cp) to derive the infinitesimal deformations. Complete expressions for
the associated displacements both within and upon the half-space
(47)  were given, and the separate contributions due to dilatational, ro-

where(41) and(31) hold, but the integration variabletakes the tational and heagbow) waves were identified, and the associated
place ofs. In contrast to(40) for the stationary load casé47) Wwave patterns desc_:rlbed. In the case pf surfgce loads moving at
exhibit not only signals due to trans and supersonic speeds, B@ns and supersonic speeds, the additional displacement contribu-

Rayleigh signals that are finite and discontinuous at their frontdions were also noted. _ _ _
The results and the accompanying analysis showed that the iso-

tropic compressible neo-Hookean solid behaved for small strains
like a linear elastic material with Poisson’s ratio 1/4. The prestress
Effects of Prestress induced by the typical3] de factoanisotropic behavior in the
Equations(18b), (20) and (32)—(34) lead to the plot in Fig. 6, infinitesimal deformation was itself bounded above in tension by
which shows that, for a compressive prestress, the dilatationaé valuew/v2, where u is the shear modulus. Tensions above
wave speed,c, in «* increases with stress level, while the ro+this limit produced a negative Poisson effect in the infinitesimal
tational and Rayleigh wave speeds,§,,v.Cgr) decrease; the response. Compressive prestress also exhibited the critical value
Rayleigh wave ceases to exist, of course, wigh holds. For the —2u(v3—1)2W3+1, below which the Rayleigh wave ceased
tensile prestress, all three speeds would tend to the same limitaexist. Both critical values are @ (), but are relevant within
very high stress levels. the context of highly elastic response. Rayleigh waves in pre-
In terms of specific solution behavior, the discontinuities thatressed media have been discussed in more general[tEdrig]
travel over the surface at the Rayleigh wave speed in the movirige latter work, indeed, showed that Rayleigh wave suppression
load casej.e., the fourth terms in47a,b), exhibit an unbounded can be associated with instability of the homogeneous deforma-
resonance when the load speed reaches the Rayleigh valueti@n. This view is consistent with static analy$#, which found
=cg). Behavior near resonance is also of note: For alhstability criteria in terms of the roots of a polynomial that re-
VZV3=I<w<v2, the w-dependent terms in the coefficients ofsembles a rationalization of a function of the Rayleigh type.
the fourth terms are negative. Thus, in view of Fig. 2, the Ray- The unbounded resonance and sign change of surface displace-
leigh discontinuities change sign aspasses through the valuements induced by the translation of surface loads at the Rayleigh
v;Cr. In the case of a classical isotropic linear elastic spli] speed that can be found in classical wave propagdfipnesults
this type of sign change has implications for the existence wfas also seen in the present study. However, the resonance was
solutions for sliding contact at subsonic speeds. now due both to material properties and to prestress levels. Such
Indeed, the resonant and near-resonant response are readilyresenance in the classical case is known to be important in sliding
tracted from the classical wave propagation reqUiisthe differ- contact{13]. Indeed, for sliding contact with friction at sub, trans,
ence here is that the phenomena depend both on the propertiearaf supersonic speeds on a linear coupled thermoelastic material
the compressible neo-Hookean material and the prestress in fitee of prestress, the unilateral Signorini conditions for contact
material. cannot be satisfied without artifice for sliding speeds between the

XH
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Rayleigh and rotational wave valugs4]. The same result holds [2] ’F\’Aaoth--_H-v 1R987~ “Tue?fy of ACOtlJtSttS’e'aS’fliCity Dami AC;?USt?'aISﬁCtisgﬁ'Ei;ﬂ
H=H H H H ni I' r ntitativi n- I Vi Vi nb.
for sliding Coma.Ct on th.e prestressed isotropic compressml_e neo- A(?hcer?ba%i aneiis\e(éRcaja;akS;aeds.éM:rtinﬁs Nijehsof;J,CDofdrecgttjgp. 257-273.
Hookean material con3|dered_h€{rk5]. '”dﬁedx _f_or compressw(_e [3] Green, A. E., and Zerna, W., 1968heoretical Elasticity 2nd ed., Oxford
prestresses that exceed the critical value identified here, the Signo- university, Oxford, UK.
rini conditions cannot be satisfied for subsonic sliding speeds[4] Beatty, M. F., and Usmani, S., 1975, “On the Indentation of a Highly Elastic
Subsonic sliding on a solid whose strain energy function reduces_ Half-Space,” Q. J. Mech. Appl. Math28, pp. 47-62. ]
for infinitesimal strains to the classical isotropic form has also[®) Truesdell, C., and Noll, W., 1965, “The Non-Linear Field Theories of Me-
. . chanics,” Handbuch der Physjkvol. 111/3, W. Flugge, ed., Springer-Verlag,
been treatedl16], but the prestress deformations considered were  gqin
not finite. [6] Hibbeler, R. C., 1997Mechanics of Materials3rd ed., Prentice-Hall, Engle-
A plane-strain situation was treated here, and it is dl8athat wood Cliffs, NJ.
the effective material constants for the infinitesimal deformationsl”] ﬁﬂ‘;g?f;ﬁ J. D., 1973Vave Propagation in Elastic Solidslorth-Holland,
are sensitive 1.:0 the natur.e of the pr_estress as well as its level a ] Sneddon, I. N., 1972The Use of Integral Transform#&1cGraw-Hill, New
to the properties of the highly elastic body. At present, therefore, ™ yo
efforts to study transient response both to surface and buried loads] van der Pol, B., and Bremmer, H., 195Dperational Calculus Based on the
without the motion constraints imposed by plane strain are under- Two-Sided Laplace IntegraCambridge University Press, Cambridge, UK.
way. Moreover, prestresses which exceed levels critical for Ray20l Hayes, . ,Qéhangaﬁé\ﬁinr{ns&hskigfé Surlace Iwaves In Deformed Elastic
lelgh Wav.e an.mhllatlon are under consnderatlon._ . é%jl] Dowqikh, M. A." and Ogden, R. W., 13'231, “On Surfage Waves in‘ a Com-
In closing, it should be noted that some basic equations us pressible Elastic Half-Space,” Stab. Appl. Analy. Continuous Mediapp.
here,e.g, (23), can be extracted from more general wgtk,11]. 27-44.
The present results are intended as an illustration of a particul&2] deHoop, A. T., 1960, “A Modification of Cagniard’s Method for Seismic
case of a highly elastic material in terms of exact and tractable  Pulse Problems,” Appl. Sci. Res38, pp. 349-356.

& . ) . 13] Georgiadis, H. G., and Barber, J. R., 1993, “On the Super-Rayleigh/
full-field and surface solutions of the Green’s function type. Fo Subseismic Elastodynamic Indentation Problem,” J. El&dt. pp. 141-161.

example, the Cagniard functiori89) are similar in form to clas-  [14] Brock, L. M., and Georgiadis, H. G., 2000, “Sliding Contact With Friction on
sical resultd 7] for isotropic elasticity. a Thermoelastic Solid at Subsonic and Supersonic Speeds,” J. Therm.
Stresses23, pp. 629-633.
[15] Brock, L. M., 1999, “Sliding Contact With Friction at Arbitrary Constant
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— Intersonic Crack Propagation—
st | Part |: The Fundamental Solution

Industrial Engineering,
University of lllinois,
Urbana, IL 61801 Recent experiments of Rosakis et al. have clearly shown that the crack-tip velocity can
exceed the shear wave speed for a crack tip propagating between two weakly bonded,
identical and isotropic solids under shear-dominated loading. This has motivated recent

H. Gao theoretical and numerical studies on intersonic crack propagation. We have obtained

Division of Mechanics and Computation, analytically the fundamental solution for mode-II intersonic crack propagation in this
Stanford University, paper. This fundamental solution can provide the general solutions for intersonic crack

Stanford, CA 94305 propagation under arbitrarily initial equilibrium fields. We have also developed a cohe-

sive zone model to determine the crack-tip energy release for an intersonic shear crack.
[DOI: 10.1115/1.1357871

1 Introduction attaining intersonic crack propagation is to introduce a weak path

The present study is motivated by recent experiments on int a_islaggtrh?[flltivz\ﬂt)ar toughnegso that crack growth is confined to

sonic crack propagation by Rosakis et @] who investigated

. . - There are al nalytical and numerical i n shear inter-
shear dominated crack growth along weak planes in a brittle poy- ere are also analytical and numerical studies on shear inte

: ) . X nic crack propagation. Freup8l], Burridge et al[15], and Si-
ester resin under far-field asymmetrical loading. They observgﬁonov [16] pinv%sgtjigated various aspegts of intersonic crack

speedcg. The origin for this belief stems from the predictions oly mmetrically expanded at constant speed from zero initial length.
continuum m_echanlcs Wlth regard to the dynamic elastic Solutl(?% and Sud 18] used the cohesive model to study the permissible
of the near-tip stress fields and energy release rates for VarQtocity zones for intersonic crack growth along a bimaterial in-
velocity regimes and different types of ext_ernal loading. _FreU’I@rface. Andrew$19] used a slip weakening model to investigate
[2] and Broberg(3] have elegantly summarized the solutions t@near crack growth along a weak interface and found that the
dynamic crack propagation for all velocity regimes. For a modeshear crack approaching the Rayleigh wave speed induces a mi-
crack, the physically admissible stress singularity and the energigcrack that moves at speeds exceeding the shear wave speed.
release rate VanISh fOI’ a.” CraCk Ve|OCItIes IN excess Of the R@n’n”ar mechanisms were also reported in the cohesive finite ele-
leigh wave speed, which implies that it is impossible for a modephent simulationg[20,21]) and atomic simulation§22]) of inter-
crack to propagate at a velocity greater than the Rayleigh waggnic shear fracture. Gao et 23] compared the atomic simula-
speed. In fact, Washabaugh and Knausdemonstrated that the tions with the continuum analysis of intersonic crack propagation
velocity of a mode-I crack tip propagating along a fabricated weahd established that, without any parameter fitting, they agree
plane may asymptotically approach the Rayleigh wave speed. kery well.
a mode-II crack, however, the order of stress singularity becomesn this paper we obtained analytically a fundamental solution
positive once the crack-tip velocity exceeds the shear wave spefed intersonic shear crack propagation. A semi-infinite crack in an
Cs, with a maximum value of 1/Zsquare-root singularijyat a infinite solid is subjected to a pair of suddenly applied concentrate
special speed/2cg at which the crack stops radiating5—7]). shear forces on the crack faces. The crack tip starts to propagate at
This singularity may lead to a positive crack-tip energy releasevelocity between the shear and longitudinal wave speeds. The
rate for mode-Il intersonic crack propagation once a cohesiveethod of analytic continuatioi24]) for subsonic crack growth
view of fracture is adopted 3,6]), i.e., the crack tip is viewed not is extended for intersonic crack propagation. The analytical ex-
as a point singularity but as a finite cohesive zone. pressions are obtained for the shear stress ahead of the propagat-
Evidence of shear crack propagation in excess of the shéag crack tip and the sliding displacement on the crack faces,
wave speed has also been provided from observations of shalledich is useful for the Part Il of this study for a suddenly stopping
crustal earthquake§8-10). Among recent earthquakes whergntersonic shear crack. A cohesive zone model is also developed
super-shear rupture velocity has been reported is the M7.4 eaithdetermine the crack-tip energy release rate in intersonic crack
quake at Kocaeli, Turkey on Aug. 17, 19¢91]). The late arrival Propagation.
of laboratory experiments on intersonic fract(re,12)) is due, in
part, to the fact that a crack in elastic homogeneous and isotropic The Fundamental Solution
solids always kinks or branches out, deviating from the initia o ) o o
crack plane and having a zigzag crack path, once the crack-tipAn infinite solid containing a semi-infinite crack on the nega-
velocity exceeds only 0-30.4c, ([2,13,14). A wavy crack insta- tiVe x-axis is subjected to plane-strain deformation. The solid is
bility occurs at low crack velocities and prevents an exploration gfear elastic and isotropic, with the shear modylusnd Pois-
the full range of possible velocities. In fact, the only possibility ofON'S ratior. For timet<0, the solid is stress free and at rest
everywhere, and the crack tip is at the origih0) of the station-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ary cqordlnate systemx(y). The positivex-axis represents the
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLIED  Preexisting weak plane for the crack to propagate. At tirme,
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Junéhe crack tip begins to move intersonically at a constant velacity
20, 2000; final revision, Nov. 9, 2000. Associate Editor: L. T. Wheeler. Discussidp the positivex-direction, wherev is between the shear wave

on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, De p : : :
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-479%66&5 and longltUdlnal wave spee:qi. As the tlp moves away,

and will be accepted until four months after final publication of the paper itself in tré pair. of concentrateq shear fordm; the x—dirgction) of constant
ASME JOURNAL OF APPLIED MECHANICS. magnitude ™ (per unit length in thezdirection is left at the
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origin (the initial crack-tip location Similar to subsonic crack form for ¢ is defined in the same way as (), but it converges

growth ([2]), this is the fundamental solution for an intersoni®nly in the strip 6<Re()<1/(cs+v) because the crack tip propa-

shear crack subjected to an arbitrary initial equilibrium field. gates faster than the shear wave speed. Accordingly, the common
The displacement potentials and ¢ are introduced such that of these two strips, €Re()<1/(cs+v), is the domain within

the in-plane displacements can be written([&3) which the Laplace transform converges.
The governing Eqsi4) become the ordinary differential equa-
u :%+ ‘9_‘/’ :ﬁ, ‘9_¢ 1) tions for® and W after the Laplace transform, and they have the
ox gy’ Y ay X general solution in the upper half-plang=0) as
The in-plane stress components can be written in terngsasfd ¢ P(2) Q)
as b= _sre* ADsy = _Srefﬂmsyl (8)
2 2 2
c J J
Oyx= —'V2¢—2—¢+2 id , where the function® and Q are to be determined by boundary
c? ay? " oxa e :
s y y conditions, andr and B are given by
2 2 2
Ci ’¢ Iy
—V2p—2——5—2 2 , 1 1
Ty H 2 258 r?Xﬂy)’ @ a__la'\/“_q—v\/{_c,Tv’
2 2u P 9)
axay  day?  ox B=—as\{~ =\ e
S S

whereV? is the Laplace operator, the shear and longitudinal wave ) )
speeds = Julp andc,= (x+ 1)/(k—1)Cs, p the mass density, Here, « has a branch cut on each side of the strigRe()
and k=3—4v for plane-strain deformation. A coordinate systeni~1/(Cs+v), i.e., from—1/(cj—v) to — and from 1/¢,+v) to

(£,y) moving with the crack tip is introduced as . The branch cuts foB, however, are both to the right of the
strip, i.e., from 1/¢ +cg) and 1/¢ —c,) to o, which are different
E=x—ut, (3)  from that for subsonic crack gr0\_/vt([24]). _These branch cuts
wherev is the crack-tip velocity. The equation of motion in thensure R&y=0 and R€3)=0 for {in the strip.
moving coordinate system becom@g]) The Laplace transform of the boundary conditi¢fs gives
Pp PP 20 P 1 PP c?
R AT A A a2+ =22 p+ —
Rlr: + ay2 + e & ot @ Cg(a {°)—2{°|P+2B{Q=0,
Py Py 20 Py 1Py T ™ 1
—0—mt =+ —5——— 5 —5=0 - 2_2 =224 =

Ag (952 (9y2 Cg d&at Cg ot? ! 2&§P+(B 4 )Q “w + wo . Ev (10)

where v
[ 02 v? (P—BQ=U_,
a=\/1- 2 = \gzZ 1. (5)
! s where
The coefficient of3?y/9&? has become negative in intersonic "
crack propagation, leading to shock waves associated with the T (g):sf 7. (£5)e dg
intersonically moving crack tip. - 0 ' '
Only the upper half-planey&0) is analyzed due to symmetry. (11)

The boundary conditions in the moving coordinate system can be . .
written as U_(9)=5"| U_(&s)edg

Ty&Y=00=0, are analytic for R&)=0 and Re{)<1/(c,+v), respectively, on
Oxy(EYy=00)=7,(£,1)— 7 S(é+vt)H(DH(—-¢),  (6) the {-plane, T, (,s) is the transform of the shear stress ahead
of the moving crack tip with respect to time, and (£,s) is the
U (&,y=0=u_(&1) transformed sliding displacement. on the crack face. Elimina-
for —co<¢<oc, wherer, is the unknown shear stress ahead of thi#on of P andQ from three equations ifl0) yields
moving crack tip(¢>0, y=0), which can be taken as zero for 2

*
£<0; s andH are the Dirac delta function and the unit step func- T.+ ~ 1 =—p ¢ RO U (12)
tion, respectively; and _ is the unknown sliding displacement on A 1 v? 112 7
the crack fac€¢<0, y=0), which vanishes foé>0. - v {— v B
The Laplace transform and two-sided Laplace transform are

applied with respect to time and moving coordinaté, respec- where
tively, i.e., ) 02

- R()=4aB+|202— (;— ) } (13)

B(£Y,9)= f P&y, e, (e AN
0

@) and « and B are given in(9). The functionR({) has four roots

[ s ([24]), namely {=1/(v—cg), 1/(v+cgr), and a double root at
PLys)= | HEyse *dé 1hv, wherecy is the Rayleigh wave speed. These roots are all to

- the right of the strip of convergencesRe(()<1/(cs+v). Unlike

For the displacement potenti@| the two-sided Laplace transform subsonic crack growth, the functi®(¢) is no longer analytic for
exists only in the strip—1/(c,—v)<Re()<1/(c,+v), which is large{ in intersonic crack propagation, and has to be decomposed

identical with that for subsonic crack propagatip®]), where Re differently from that in subsonic crack growtf2]). We define a

stands for the real part of a complex number. The Laplace tramew functions by
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1\ 12 where the closed counterclockwise contour of integralida the
{— boundary of the strip, i.e., the two vertical straight lines
1 Ctv I'y(Re@=0) andI',(Re@)=1/(c,+v)) in the complex{-plane.
4i g 1 For subsonic crack propagatios() is decomposed by taking
+ logs,({) and logs_({) as the integrations on these two straight
G—v linesT'; andI',, respectively. This standard method, however,
R(?) does not work_ for intersonic crack propagat_ion bec_aaqgae is no
X 5, (14) longer analytic for largel such that the integration on each
1 1 1 straight line would diverge. In the following, we adopt a different
= v—Cgr - v+cg - method to decompos ) for intersonic crack propagation. The
which has no roots on the-plane, but has branch cuts
from —1/(c,—v) to —, and from 1/¢ +v), 1/(v+cg), and s'({) 1 logs(z)

derivative of(16) with respect taf is
1/(v —cs) to . For large, SO 2m -0 dz a7
s~1+[(2—v?c2)?(4iayag)]((£—1U(ci+v)) (¢ + (1L,

s({)=

v

According to the decomposition i15), the left-hand side of17)

—v))"2 can be written as/, /s, +s’ /s_. Therefore, we may take
and is therefore not analytic in the entire range of intersonic crack,, ,
propagation ¢.<v<c,) except when the crack-tip velocity is >+ _ L logs(2) . s-(d) _ i logs(z) ,
v2 times the shear wave speegl. In fact, it is well known([2]) s, ({) 2mi rl(z—g’)2 s (0 2mi r2(z— 0)?
that only at this particular velocity of2cg stresses near an inter- (18)

sonic shear crack tip have the conventional square-root singular-
ity, and the crack-tip energy release rate remains finite and neh-similar decomposition was used by Nol5] in the study of
Zero. functions that are neither bounded nor single-valued at infinity.

In order to solveT . andU_ from (12), we decompose({) as Based on Cauchy’s theorem, the integration gatfRe()=0) for

s’./s, can be augmented to a path on both sides of the branch cut
s(§)=s+(Ds-(D), 15) b&wteen— 1/(c, —?)) and —x, FuFr)ther integration with respect {o

wheres, is analytic for R€)=0, while s_ is analytic for Re{) gives
<1/(c;+v). For any ¢ in the strip O<Re@)<1/(c,+v), the

sl ' s » dr
Cauchy’s integral formula gives +() ;{_EJ' arctanv, (1) a9
1 logs(z) s:(0) T J ey v) r(r+¢)
logs({)=s— dz, 16
U P r z=¢ (16) where
|
02 1 2\ 2
(Zrz——z(ri—) )
c? v
Vi(r)= (20)
i 1 1 1 1
4ajag’\[r¥ r+ r+ r+
Ci—v c+v U —Cg v+Cq

As (—+2, 5, (£)/s.(0) is on the order of9~ Y2 where (D () v2(v2—c3) s.(0) s_(0)

S+
s(£)=s(0)

1 Ay, s+(0) s_(0) 4c;‘&5(1 g) s+(0) s_(0)
g= —arctan———r> (22) |
i 22 (23)
2
CS

wheres(0) is evaluated fronf14). Finally, Eq.(12) governing the
is the order of stress singularity near an intersonic shear crack tipknownsT, andU _ can be decomposed as
([2]), and it is always less than 1/2 except at a single crack-tip
velocity v=.2cs. Similarly, the integration pathl';(Re() s.(0) T,
=1/(c;+v)) for s’ /s_ in (18) can be augmented to both sides of 3 (O o)t
the branch cut between tf¢-v) andee. This leads to ! (@-v)¢

s_(¢) L (= N s.(0) 1 s.(0) \/z *
s_<0>:ex‘{7rjy<cl+v> +(0) Jic—v)i+1 S(%) o |vi-1
dr .

X g+ g—arctanv,(r))Hl(r) m} (22) _ips (9 [(v—cr){—1][(v+cr){—1]U_

500 le+u) - 1\(v-cgd- 1o tegi-1
where the functionV_ is given in (20), and H(r)=H(1/ s.(0) v
(v+cg)—r)—H(r—1(v—cy)). As {——o, s_({)/s_(0) is on _Zr RE— (24)
the order of| |2~ 9. S (E) ¢ vi-1

The functions({) in (14) can then be decomposed as v
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Its left-hand side is analytic to the rigiRe({)>0) of the strip 2\2
since{=1/v is a removable singularity, while its right-hand side fi(r)— ( 2— 7)

is analyt_ic to the Ieﬁ of the s_,trip (R&1/(c;+v)). Therefore, fo(n)=tan | 4eyaq - s . (32)
(24) defines an entire function. The Laplace transform of the ; P
stress ¢~r~9) and displacementu(~r1~9) near an intersonic 2= c_§ 1(r)+16ajas
shear crack tip(—0) gives the asymptotic behavior of the trans-
formed stress and displacement fgf—~» asT, ~¢9"t andu_ @"
~ 972 It is then straightforward to show that both sides(24) v? 1\2]2
approach zero al|—c. Based on the Liouville’s theorem, both [Zrz— —z(r— —) }
sides of(24) must vanish for all. This gives f(r)= Cs v
()= .
s.(0) \F > , \/ 1 )( 1 1 1|
= ——~ \V V(g —v){+1- r r+ r— - r—
T+ [S;,(l/v) C (@-v)f+1-1 v{—-1’ (25) c—v ctv U—CS’ v+CS‘
_ics 5.(0) s_(0) (33)
o S+(1/v) s_({) It is observed that the near-tip stress decreases with time via a
power of 1—q, i.e., 7~ 174,
V(e +u)—1V(w—c){—1V(v+c(-1 \/E ™ The sliding displacement on the crack fage(£<04), is im-
[(v—cr){—1][(v+cr){—1] cv{—1" portant to the study of a suddenly stopping crack in Part Il of this

(26) paper. The inversion dfl _ in (26), together with the Cagniard-de

. . o ) Hoop method, gives
The functionsP and Q can be obtained by substitutinig, in

(25 andU _ in (26) into (10), which in turn give solutions for the _* “ue
transformed displacement potentigbsand W in (8). The means ~ U-(§=00)= PV T Im[U_(z7)]d7H[ (¢, +v)t+£],
of Cagniard-de Hoop method is then used to invert the double ! (34)

transforms for¢ and ¢. In the following we focus on the shear o ) ]
stress ahead of the moving crack tin,(£>04). Inversion of the WherePV stands for the Cauchy principal value integral; the in-

two-sided Laplace transform is considered first, tegrand is understood as the limiting value just above the branch
1 [loti= cut from 1/(c,;+v) to o0, and InfU_(7)] is obtained from26) as
AT+(§,S)=—-J T, (ye¥ed¢, (27) cu ™ s F
27 J gy Im[U_(7)]= g— +(Z) (I=vmv(e—v)n+l - En;
where {, is a real number in the strip, i.e.,<Qy<1/(c,+v). s M +(—) a7
Based on Cauchy’s theorem, the integration path can be aug- v
mented to a path on both sides of the branch cut between (35)

—1/(c,—v) and —=, and 7, becomes where

%+<§,s>=—if+m T, (= e S7dy, (28  Foln=4nie—ont e to)n=1l(v-con-1]

wa=) X[(v+cg)n—1]
where Im stands for the imaginary part of a complex number, and
the integrand is understood as the limiting value just above the
branch cut. The inverse Laplace transform28) with respect to
s can be obtained by observation since the inversioe 67’¢ is

—C|Cy

1 2
27"~ Zwn= 1)2}

S

simply the Dirac delta functio@(t— 7). In conjunction with the X V1= (v=Cg) (v +cg) n—1*H[1= (v = Cq) 7]
analytlca! expression _oT+ in (25), the shear stress ahead of the XH[(v+cg) n—1], (36)
propagating crack tip is found as
= 4 —_ — — J—
4c? 5 5.(0) s.(0) Fo(7)=167"[(cj—v)n+1][(ci+v)n—1][(v—Cs)n—1]
T+(§>ovt): C3/2 7™ g 1 t 2 1 4
i s+(—) s_(fg) X[(w+ e n=11+ 67| 277~ — (on=1)?| . (37)
v S
X[ (¢ +v)t+ EJH[ (¢, —v)t—&] It is noted that the denominatdty(») has simple poles at 1/
(v—cg) and 1/¢p +cg), as well as a double pole atvl/
Ne—o)t—EVw—cot+év+cyt+é 29)
[(v—crt+El[(v+cpt+E](vt+£)°
It has the asymptotic form near the crack ¢fp-0+) 3 Discussion
~ 4 % 2 2414 The fundamental solution in the previous section can provide
T (§—0+,1)= Amacsf(v) ™ 5:(0) | (b7-cot , the general solution for an intersonic shear crack under an arbi-
(c+v)é trary initial equilibrium field. This is because that the process of

77\/C|113(v2—0§) vt 1

S+ v crack propagation is essentially the negation of the equilibrium
(30) '(cjractiltgn distribution during dynamic crack growtsee[2] for
etailg.

The stress singularity around an intersonic shear crack tip is
always weaker than the conventional square-root singularity ex-
cept at a single crack-tip velocity af=2cs. Only when the

Uw+ey) fo(r) T fo(r) crack-tip velocity becomes? times the shear wave speed the
f(v)=ex J - df—f d (31)  square-root singularity is preserved and the crack-tip energy re-

Yoy TY lease rate remains finite and nonzero. In fact, this is consistent
Here the functiorf, is given by with the first experimental observation on the shear-dominated

wherea, andag are defined by5), the power of stress singularity
g is given in(21), and the functiorf is related to the crack-tip
velocity v by

Uv-cg T
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intersonic crack propagatiaiiil]), in which the crack-tip velocity 0.3

was observed to approach a steady-state valu€of. The mo-
lecular dynamics simulation of the shear-dominated intersonic
crack propagatiof{ 22]) has also shown that the crack-tip velocity
tends to approachZcg. At this particular crack-tip velocity

= 2c,, the stress and displacement fields near the propagating
crack tip are

_l+a'2 Ki -l _
Oyx= o Elm[(§+laly) 2]‘ Uyy_0|
_Ku ; —1/
ny_\/T_WRQ:(§+Ia|y) 2]1 (38)
1 K . K . K E 210
unglw—;—ﬂlm[@ﬂa.y)l’z], “y:w—;_wRe[(§+'“'y)l/z]’ v
(39) ¢

where «;, defined in(5), becomesa,= \/1—2c52/c|2; K, is the
crack-tip stress intensity factor for=\2cs,

Ki(v=v2c9= lim 7.(&t)2mé.

-0+

Fig. 1 The energy release rate, G, is shown versus the crack-
tip velocity v at time =.vt/7*=1 and 10; G, is the energy re-
lease rate for a stationary crack tip subjected to a pair of shear
forces 7* at the same distance of vt behind the crack tip, 7 is
the cohesive strength, ¢, the shear wave speed, and Poisson’s

It is clearly observed front38) that stresses are singular only aratio »=1/3

the crack tip for this particular crack-tip velocity @Pcg. This

indicates that,2c, is the radiation-free crack-tip velocity, i.e.,

there is no shock wave emanating from the crack tip at this

(40)

velocity.

zone model of Dugdale-Barenblatt type to remedy the pathology

From the asymptotic expressig80), the stress intensity factor of zero crack-tip energy release rate, when the crack-tip velocities

for v=2c is found as

Ki(v= \/Ecs)

2¢3 [, V2cq
~g(2c2-c}) c

s+(0)

f(\2co)Ko,
S(E)

(41)
where the functionf is defined in(31), and Ky=K;,(v—0)

are different from2cs. This provides an energy absorption
mechanism near the crack tip. We have used such a model of
shear cohesive process zone, with details of the model given in the
Appendix. The shear cohesive zone propagates with the moving
crack tip. The constant shear cohesive strength is denoted .by
The energy release ratg, is evaluated from the energy fl2])

into the cohesive zone. L&y=((1— vz)/E)KS denote the crack-

tip energy release rate for a stationary crack tip subjected to a pair
of shear forces™ at the same distance of behind the crack tip,
andK,= 7* \2/(mvt) be the corresponding stress intensity factor.
The normalized energy release ra® Gy, is given by

=7*2I(«T) is the equilibrium stress intensity factor for a sta-

tionary crack subjected to a pair of shear foregsat the same

1
distance ofl = Zcgt behind the crack tip. For Poisson’s ratio G cs s+(0) ; !
v=1/3, the factor beforeK, is 0.464, ie., Ky(v= ?/205) Go q W(vz—cé) s+(l/v) @)
=0.464,,(v—0), such that the near-tip shear stress is slightly
less than one half of its counterpart for a stationary crack. This —— a2
also indicates that the stress intensity factor reaches its “steady- XIN(A—ag) ™+ 16ajas— *
state” limit (0.464&,) instantaneously. ¢
The crack-tip energy release rate for |Zc, can be obtained 160 &2 (af+a2) v2-c?
via the energy flux integra[2]) and the asymptotic crack-tip field 1-q CE (43)

in (38) and(39) as([7])

Ki(v=v2c) 1-12K2(v=\2cy)
G(v=12c9= =
2¢? E  2yv1-v)
du\/1-—
Ci

(42)

At the radiation-free crack-tip velocity = 2cg, the above ex-
pression degenerates to that(42). The normalized energy re-
lease rate does not depend on time, indicating the “steady-state”
limit is reached instantaneously. At other velocities, however, the
normalized energy release rate becomes time-dependent. Figure 1
shows the normalized energy release rate versus the intersonic

This relation between the crack-tip energy release rate and gck-tip velocity for timerovt/7 =1 and 10, and Poisson’s ratio
stress intensity factor at=\2c is different from its counterpart ,,—1/3 The normalized energy release rate decreases as time in-

for a stationary crack tipy—0) by the factor 1/2v(1—7v),
which is 1.06 for Poisson’s ratio=1/3. ThereforeG(v = 2c)

creases, which means the “steady-state” limit is not reached in-
stantaneously, and the energy release rate decreases faster than

=0.2285, whereGo:((l—vz)/E)K?J is the energy release ratet™! represented irG,. This does not occur in subsonic crack

for a stationary crack tip subjected to a pair of shear for¢eat
the same distance ¢f=2cgt behind the crack tip.

For the crack-tip velocity other tharn= \2c, the stress singu-

growth and is unique for intersonic crack propagation. In fact, as
time approaches infinity, the normalized energy release rate ap-
proaches zero in the entire range of intersonic crack propagation

larity around an intersonic shear crack tip is weaker than the cogxcept at the radiation-free velocity= \2c;.
ventional square-root singularity, which leads to a vanishing The length of the cohesive zonk, is obtained from the re-
crack-tip energy release rate. Brobgéd has introduced a processquirement to eliminate the crack-tip singularity
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047 Appendix

Cohesive Zone Model. We develop a cohesive zone model in
order to obtain the nonvanishing crack-tip energy release rate for
this fundamental solution in intersonic crack propagation. A co-
hesive zone is imposed behind the propagating crack tip to elimi-
nate the crack-tip singularity if80). The stress field is composed
of two parts that lead to positive and negative shear stresses ahead
of the crack tip, respectivelyj) the fundamental solution in Sec-
tion 2; and(ii) the cohesive-zone solution, whichsha a constant
shear stress traction and vanishing normal stress traction on the
crack face:

0y (§<0y=0)=7H(£+L), o0,(6<0y=0)=0, (45)

1 where . is the shear cohesive strengththe length of the cohe-
sive zone, andH the unit step function.

Instead of conducting a fully transient analysis as in Section 2
to obtain the exact cohesive-zone solution, we use a steady-state
solution to approximate this transient one such that the time de-
Fig. 2 The length of cohesive zone, L, is shown versus the rivative is related to the spatial derivative with respect to the mov-
crack-tip velocity v at time 7,vt/7*=1 and 10; L, is the cohe-  iNg coordinate¢ by d/dt=—vald¢. The resulted cohesive-zone

=)
@
N
=)

SSERS

sive zone length for a stationary crack tip subjected to a pair of solution is independent of time, except the cohesive zone ldngth
shear forces 7* at the same distance of vt behind the crack tip, which is to be determined by eliminating the time-dependent sin-
7. is the cohesive strength, ¢, the shear wave speed, and Pois- gular crack-tip field inN30). The energy release rate obtained from
son’s ratio »=1/3 this approximate solution will be validated against the exact en-
ergy release rate i¥2) at the radiation-free crack-tip velocity
=2cs.
V S
- s ct ™ s.(0) 1 The equation of motiort4) becomes
L=| qVy(1—ag)*+16ajasg TN f(v) ) ) ) )
Ve3(vi—cg) chts 1 , %P a¢70 e Mfio 46
o WoE Tap o Twag eyt
v2—c§ Its solution in the upper half-plane can be generally written as
X p— t. (44) (2D
| TV
Let Lo=7*2/(47%vt) denote the corresponding cohesive zone d=RgF({+iay)], ¢=y(é+agy), (47)

length for a stationary crack tip subjected a pair of shear fortes
at the same distance oft behind the crack tip. The length of
cohesive zone irt44), normalized byl , is shown in Fig. 2 for
time rwt/7* =1 and 10, and Poisson’s ratio=1/3. Similar to
Fig. 1, the normalized cohesive zone length decreases with
creasing time, except at the radiation-free velooity (2cs. The

whereF(z) is an analytic function of the complex variabtei
=,—1, and ¢ depends on a single real variabfer agy. The
symmetry conditionsr,,=u,;=0 ahead of a mode-Il crack tip
(£>0,y=0) lead to REF"(£>0)]=0 andy(£>0)=0. An analytic
flinction can then be defined by

normalized cohesive zone length remains unchanged ab the 0(z)=F"(z) if Im(2)=0,

=2cs, because the square-root crack-tip singularity is _

preserved. =—F"(z) if Im(2)=<0, (48)
4 Concluding Remarks whereE(z)=F(z) is analytic in the lower half plane, and is

We hav nduct fully transient analvsis t tain analvfinaiytic on the entire plane except on the crack face.
e have conducted a fully transient analysis to obtain analy The traction boundary conditio5) on the crack face is ex-

cally the fundamental solution for intersonic shear crack propaga- :
tion. A semi-infinite crack in an infinite solid is subjected to a pai ressed in terms df and s as

of suddenly applied concentrated shear forces on the crack faces. Te

The crack tip starts to propagate at a velocity between the shear 2a, ImF"(£<0)+(1—ad)y"(£<0)=— —H(&+L),

and longitudinal wave speeds. This fundamental solution can pro- (49)
vide the general solutions for intersonic crack propagation under _n2 ” " _

arbitrary initial equilibrium fields. There exists a single crack-tip (1= a))ReF(£<0) + 2a5y"(§<0)=0.
velocity, v = J2c, at which the crack tip has the conventionaElimination of /(¢<0) and substitution of¢ in (48) into (49)
square-root singularity, where is the shear wave speed. Theyields

crack-tip stress intensity factor at this crack-tip velocity is slightly . R R R

less than one half of its counterpart for a stationary crack. We — [(1—a2)?+4iaas]0" (£<0)—[(1—a2)?—4i e as]
have also developed a cohesive zone model to determine the

crack-tip energy release rate for an intersonic shear crack. X 0~ (£<0)= 4&52 H(E+L)H(— &) (50)
o
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Apparently First Closed-Form
Laboratoire de Recherchesgl\pg:aﬂgsa:: So I uti 0 n for Freq u e nc i es

Mécanique Avangee,

mers e e Of Deterministically and/or
Lmismaore | OtOChastically Innomogeneous
Department of MechanicalhéﬁgﬁégMS: S I m p Iv S u p p 0 rte d B e a ms

Florida Atlantic University,

Boca Raton, F1. 33431 An infinite number of closed-form solutions is reported for a deterministically or stochas-
e-mail: iglishak@me.fau.edu tically nonhomogeneous beam, for both natural frequencies and reliabilities, for special-

ized cases. These solutions may prove useful as benchmark solutions. Numerical examples

are evaluated. [DOI: 10.1115/1.1355034

1 Introduction In this study, it is assumed that the cross-sectional area is con-
tant, but bothD and R are specified as polynomial functions,

The aim of this study is to find some closed-form solutions t iven by

the dynamic equation of a beam in which the Young’s modul

and the density both are polynomial functions, with both the de- m

terministic and stochastic inhomogeneities included. The exact R(f)ZE a g ©)

mode shape is searched also as a polynomial function, with atten- =

dant closed-form expression for the natural frequencies. The con-

sidered case is the beam simply supported at both ends. For the n

bibliography of investigations on vibration and buckling of non- D(g):E b;& ?3)

homogeneous beams, one may consult with the papers by Eisen- i=0

berger[1], and Rollot and Elishakoff2]. . . . . .
The importance of the found solutions lies in the possibility o‘f"heref:X/L IS a nond!men3|onal aX|aI. coordinate.

their use as benchmark solutions against which the efficacy ofVe assume thaw(¢) is also polynomial

various approximate methods could be ascertained. Additionally, p

presently there is a considerable literature on so-called stochastic W(f)zz w;é 4)

finite element methodSFEM), that deals with inhomogeneous ey S

structures involving random fields. The latter random functions

can be represented as mean functions superimposed with dewherew; are sought coefficients. In these expressioms), andp

tion functions. Solution of the problem with properly chosen meaare, respectively, the degree of the polynomials R{€), D(¢),

functions often constitutes an important part of the analigge, andw(¢).

e.g.,[3,4]). Thus, the closed-form solutions, both in deterministic Equation(1) can be rewritten as

and stochastic settings possess attractive analytical advantages

over approximate solutions where inherent approximations of d? d’w(¢) 4 B
various natures are needed. For alternative formulations of ran- dé? D(§) dé? —kL"R(w(£)=0 ®)
dom eigenvalue problem, the reader may consult with papers by
Shinozuka and Astil[5] and Zhu and W{6]. where
_ 2
2 Formulation of the Problem k=w*. ®

The dynamic behavior of a beam is described by the followings the involved functions are assumed to be polynomial ones, the

equation: degrees of each polynomial function must be linked, namely
d? d?w(x 5o
—| D(x) —(2)}—R<x>w2w(x)=o (1) n+(p=2)=2=mtp ™
dx dx )
. . or, simply
where D=EI is the flexural stiffnessE=Young’s modulus,
p=density, |=moment of inertia of the cross sectiofR(x) n—-m=4. (8)
=pA is the inertial coefficientA=area of the cross section,
w(x)=displacement, ane is the natural frequency. We observe that Eq8) does not depend on the degneef the
displacementv(&). We arrive at the seemingly unexpected con-
To whom correspondence should be addressed. clusion that any polynomial function for the displacement may be

Contributed by the Applied Mechanics Division offf AMERICAN SocieTy oF — used in Eq.(5) if it also satisfies the boundary conditions. This
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED  fgct will be used at a later stage. In view of Ea) the expression
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, May; ; .

25, 1998; final revision, Sept. 7, 2000. Associate Editor: J. W. Ju. Discussion on tLoer D(f) can be written as follows:

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department of
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will .
be accepted until four months after final publication of the paper itself in the ASME D(&)= 2 big'. 9)
JOURNAL OF APPLIED MECHANICS. i=0

m+4
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3 Boundary Conditions

The case of the simply supported beam is associated with the

following boundary conditions:

w(0)=0 (10)
D(0)W"(0)=0 (11)

w(1)=0 (12)
D(1)w"(1)=0. (13)

Solution to Eq.(11) can be found with eitheP(0)=0 or w"(0)

=0. However, Young’'s modulus, which is zero on one point, has

no physical sense, thus Ed.1) is equivalent tov”(0)= 0. Hence

L*(2ka;_3—kay_4—ka_1)+12(i+1)(i+2)(bj—b;.1)=0,

for 4<sis=m+1 (26)

L*(2kap-1—Kap-2)+12m+3)(Mm+4) by 2= by 3) =0,

for i=m+2 27)
L*(2kay—kam-1)+12(m+4)(Mm+5)(by 3= bmis) =0,

for i=m+3 (28)
—kL*apn+ 12(m?+ 11m+30)by,, 4=0, for i=m+4. )

we postulateby>0. The same reasoning can be applied t0 Eqyote that the Eq922)—(29) are valid only ifm=3. For cases that
(13). So the displacement has to satisfy the following conditiongagisfy the inequalityn<3, the reader is referred to the Appendix

w(0)=0 (14)
w’(0)=0 (15)
w(1)=0 (16)
W’(1)=0. 17)

Satisfaction of the boundary conditiofls4)—(17) requires that

the degree of the displacement polynomial must at least be

Assuming thatw (&) is a fourth-order polynomial

W(E)=Wo+ W&+ W%+ waéd+w,ét. (18)
The satisfaction of the boundary conditions yields
W(E)=wy(£-283+¢%). (19)

4 Expansion of the Differential Equation
By substituting the different expressionsf¢), R(&), w(¢) in
Eq. (5), we obtain

m+4

wy| > i(i— )b 3~ 126+ 12¢2)
2

m+4 m+4

+ ) 240, +2) b8~ 12+ 24¢)
i=0 i=1

m
—kL*Y, ag(6-28%+£% | =0, (20)
=0
The latter expression can be rewritten as follows:
m+3 m+4
—12 > i(i+ )b E+12 D i(i—1)b&
i=1 i=2
m+4 m+3 m+4
+24 > big—24 > (i+1)bj.,£+48 D, ibé
i=0 i=0 i=1
m+1 m+3 m+4
—KL* D) a6 +2KLA D) & g€ —KLY Y, & 4£=0.
i=1 i=3 i=4
(21)

The EQq.(21) has to be satisfied for aréy This requirement yields
the following relations:

—24(b;—bgy)=0, fori=0 (22)
—kL*g+72(b;—b,)=0, fori=1 (23)
—kL*a;+144b,—by)=0, fori=2 (24)

L4(2kag—kay)+240by—b,)=0, fori=3 (25)

Journal of Applied Mechanics

A. Note also that the Eq$22)—(29) have a recursive form.

The sole unknown in Eq922)—(29) is the natural frequency
coefficientk, yet we observe that we have+5 equations. We
conclude that the parametdssanda; have to satisfy some aux-
iliary conditions so that Eq€22)—(29) are compatible.

% Compatibility Conditions

A first compatibility condition is given by the E¢22), leading
to by=h,. From the other equations, several expressionk &an
be found. Its values determined from E(&2)—(29), respectively,
are listed below:

k:72(b1_b2)/L4a0 (30)
k=144b,—bg)/L%, (31)
k=240a,—2a,) *(bs—b,)/L* (32)

k=12(i+1)(i+2)(a-y+aj-4—2a-5) ‘[b—bi.J/L%,

for 4<ism+1 (33)

k= 12(m+3)(m+4)(am—272am—1)7l[bm+27 bm-%—a]/l-4

(34)

k=12(m+4)(M+5)(an_1—28n) [bm:3—bmsal/L*
(35)
k=12(m?+11m+30)b,,, 4/L%a, . (36)

To check the compatibility of these expressions, all expressions
for k have to be equal to each other. We consider two separate
problems:(i) material density coefficienta; are specified; find
coefficientsb; so that closed-form solution holdsii) elastic
modulus coefficient®d; are specified; find coefficients so that
closed-form solution is obtainable.

6 Specified Inertial Coefficient Function

Let us assume that the functi@®(¢), of the inertial coefficient,
and hence alg; (i=0,2...m) are given. Let us observe that if
b+ 4 is specified then the expression given in E2f) is the final
formula for the natural frequency coefficiekit Then Eqs.(30)—
(36) allow an evaluation of remaining parametérs Note that
b+ 4 anda,, have to have the same sign due to the positiviti.of

From Eq.(35) we get

m?+11m+ 30
(m+4)(m+5)
Equation(34) yields

Am-1
an

1]+1

Pmis= Pmia- (37)

MARCH 2001, Vol. 68 / 177



Table 1

m IE) k
0 B(3+3 - 267 - 287 +£7) 360—LbT
1 (b/10)(59+ 598 — 1127 - 46£° - 4&* +10¢°) 504—;T
2 (B/15){135 +135 —5£7 —758% —338* —5€° +15¢°) 672%
3 (b/35)(434 + 434 +1487 —1965° — 70 —70£° —108° +35¢7) 864%
4 (B/28)(452 + 452 + 3287 = 1786 ~526* - 52£° — 526° ~7&7 +28¢*) 1080%
5 (b/36)(648+ 648 + 697 —2245° —565% —565° —56£° - 567 —8" +36¢°) 1320%
b
6 (b/15)(371 +3718 + 4182 —1248% — 2584 — 2585 _ 0586 _ 2587 - 2568 —3¢° +15§1°) 1584?
b
7 (b/55)(1628 +16288 +1988% — 51783 —882* —88¢5 — 8850 —88r7 888 — 8822 — 10810 + 55@“) 1872F
b
8 (b/330)(5715 +571518 +149282 — 351383 —5106* - 51085 - 51088 - 51087 — 51068 - 51067 — 510210 — 55811 +330&_,12) 2184—5
, )
9 (b/26)(1053 +10538 +14382 —3128% —398% — 3985 ~ 3066 — 307 3068 3087 ~39¢10 _ 30511 _4¢12 +26g*3) 2520L—4
m+5)\ an_,—2am_1 [ ag ) ao
= + ={2—+ —2—bs.
2 (m+3 e *1|bnea by=| 22 +1|b,—2 by (42)
m+5\ an_>—2am_1 And finally, Eq.(22) yields
“\m+3) T, —2a, Pmea (38)
m—1 m boz bl . (43)
Equation(33) results in Thus, for specified coefficientay, a;, .. .ay, andby,.4, Egs.
i+3\a —a .—2a (37)—(43) lead to the set of coefficients in elastic modulus such
= (7 it =311 b, that the beam possesses mode shape given iiLExNote that if
i+1) a—-ai3—2a ., a;=a, then coefficientd; do not depend on the parameter
(i+3 a_,—a _,—2a s A . To sum up, if
i+1) a—a_s—2a_, 2 (39) Em: i E“ i
. R(E=D, af D(&)=, b 44
wherei belongs to the seft4,5, ... m+1}. (© = € DY) =0 € “4)
From Eq.(32) we obtain .
a.(32 whereb; are computed via Eq$37)—(43), the fundamental mode
3\ a,—2aq 3\ a,—2ag shape of a beam is
3780 < (£/A37 80T e W(E)=wy(§-283+¢ (45)
Eq. (31) leads to and the fundamental natural frequency squared reads
5\ a '5 a 2_ 2 4
b2=[ o) 2 +1}b3(3 . ST w?=12(m?+ 11m+30)b,, .  /a L. (46)
2 0 2 0 As we have seen, in order to obtain closed-form solution it is
From Eq.(29) we get sufficient that(1) all a; coefficients and?2) the coefficientb,,, 4
Table 2
m D k
b
0 b(3+3.5—2g2 —2¢° +§4) 360L—4
b
1 (b/lO)(38+38§+3§2 3283 1164 +10§5) 252F
b
2 (b/45)(203+203§+63§2 - 7783 —1198% — 3585 +45§"’) 224F
b
3 (b/140)(725 + 7255 +30562 — 11583 — 24184 ~ 32585 — 8588 +140§7) 216;
b
4 (b/140)(815 +815¢ +39582 — 2563 1516 — 23587 — 29586 — 7087 + 140&_,8) 21624-
b
5 (b/1512)(9751 +97518 + 513162 + 51183 — 87564 — 179987 — 254956 — 295487 — 6448 + 1512&9) 220L—4
1584 b
6 (b/1470)(10388+10388§ +576882 +114883 - 2386 116285 — 182266 — 161767 — 270263 — 546%° +1470§1°) = 7
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be specified. Yet, the requirements are not necessary ones. Indeddrst, Eq.(22) leads to
one can assume that coefficient are given and instead lof,, »

any coefficientd;(j # m+4) is specified. If this is the case, then bo=b;. (48)
from Eq. (33) one expresseb; . ; via b; andk; substitution into  From Eq.(31) we get
subsequent equations allows us to expt&ss, by 3,bmia Via
b;; analogously, substitution of; into Egs. (30—(32) yields _ bs;—b,
sought exact solutions. a;=2ap b,—b, (49)
In Tables 1 and 2, some sample specified funciigr) and the ]

attendant fundamental natural frequency coefficients are givdefl- (32) yields
The polynomial functiongR(x) were specified as 5a,(b,—b3) + 6ay(bs—b,)

N . a,= 1{04— D3 0{D3~ D2 (50)

i . i 3(b3_ b2)
R(=2, &, R(&=2, (i+1)¢, (47) | |

= i=o Eq. (33), wherei =4, results in

respectively, in Tables 1 and 2. ag(4b,— 6bs+2b3) +a,(4b,— 4bs) + a,(3bs— 3by)
az= .
7 Specified Flexural Stiffness Function : 2(bs—bs) 51)
Consider now the case when the flexural stiffness function is ) )

specified, implying that alb;(i=0, ... .m+4) are given. The From Eq.(33), where 4<i<m, we obtain
following question arises: Is it possible to determine the material
density coefficients;(i=0, ....m), such that equations corre- g —— = 13 (i+3)(b,,—b;,1)+2a ,(i+1)
sponding to Eqs(22)—(29) are compatible? One immediately ob- (i + 1)(bi+1*bi){ ot (B2~ by -2l

serves that there aren(+5) Egs.(22)—(29), while one has only o _ B o s
m+1 unknownsgag,aq, - .. ,ay. In actuality, however, one has X(Biv 1= by) +ai—5[bi+1(145) =2b;.o(i4+3) +bi(i +1)]
only m unknowns. In order for the process of determining of +a_4(i+3)(bi1p—bisg)l). (52)
coefficienta; to proceed, one of th@; coefficients should be i .
specified. The most convenient assumption is to fix eitear a, 1hen from Eq.(36) and Eq.(30), one can find an expression of
or a,,, since in these cases only one equation, respectively, Bp+4. SO that the compatibility of Eq$22)—(29) is checked,

(30) or Eg. (32) or Eq. (36) will be sufficient to determine the 6a,,(b;—b,)
sought expression of the natural frequency coefficient. Let us as- bm+4=%' (53)
sume that the coefficiersty is given thus, to check the compat- ap(m”+11m+30)

ibitl)i_ty o_fI Eas. (22—(29), four b; coefficients cannot be choseng g, Eq.(35) and Eq.(36), a relation forb,, . 5 can be found,
arbitrarily.

Note that the natural frequency coefficidnbas to be positive b, 5
thus, the differencé,-b, and the coefficiend, have to have the )
same sign. Moreover, as the coefficiegtis positive, the differ- _ b 4(M™+9M+20) + 62y, 1(by — ) +1287,(02—by)
enceb;-b, should be positive. So, fdr;>b,, one substitutes the ag(m+4)(m+5) '
value ofk determined from Eq(30) into Eq. (31); this allows to (54)
determine the coefficierst; so that the frequency coefficiektin
Eq. (31) is positive, and so on. Finally, Eq.(34) and Eq.(35) yield to an evaluation ob,, ,,

|
b _ agbm3(M+3)(M+4)+6am,_»(b;—b,) +12a,_1(b,—by)
ma ag(m+3)(m+4) '

To sum up, while specifying the elastic modulus function, amly 1 coefficientsh; can be chosen arbitrarily; the other remaining
four coefficients are connected with the arbitrary ones via(&§). Eqgs. (53)—(55).
Thus, if

(55)

m m+4
R(&)=2, ai D&)= 2, bie, (56)
wherea; and four ofb; coefficients are computed via Eq48)—(55), the fundamental mode shape of a beam is
w(§)=w;(§-2£3+¢%). (57)
The fundamental natural frequency square reads
0?>=72(b;—b,)/a L (58)

The closed-form solutions could be utilized for comparison with approximate techniques. For example, utilization of the single term
Boobnov-Galerkin method for the case

R(§)=1+2£+38+483+5¢ (59)
163 163 79 5 151 a7 59 1
D(§)=bel®| St g é+ 562~ oo~ m§4*2—8§5*2—8§6*§§7+§8) (60)

yields, with sir{7¢) taken as a comparison function, the following expression:

_ bgl* (6,945,756-409,185r*+ 391,612r° — 2,716,875r° + 17,3567°
22,050 107*— 1972+ 15

(61)
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or numericallyk=216.2969BgL*, which differs from the exact whereas its variance reads
ion k= 4
solutionk=216bgL* by 0.13 percent. Var[ Q?]=o*[Var(B,) + Var(B,)]. (70)

. . As in Eq.(63), reliability is defined as a probability that the natu-
8 Stochastic Analysis ral frequency square€l? does not exceed a pre-selected value
The preceeding formulation allows one to perform a stochaség. Once the joint probability density of the coefficiemts, b,
analysis to account for the possible randomness in the matedglare specified, the reliability functioncan be derived directly.
density and elastic modulus. The reliability is cast as

2
8.1 Probabilistically Specified Inertial Coefficient Func- r=Prolf o*(B;—B;) <wg]. (71)
tion. Assume that the coefficients form a random vector with A new random variable is introduced
a joint probability density fa(a;,a,, ...,ayn), where AT 5 )
=(A;,A,, ... A;) and capital letters denote a random variable Z=0%(B1~By)~ wy (72)
Ai whose possible values are denoted by the lowercase notatigie reliability is re-written as
a; . As Eq.(36) suggests the natural frequency, squaigds also

a random variable denoted by r=Pro(Z<0)
92: 2B /1A ” b,+ wlo? by
& Bmealfm = db, 2 fg,g,(b2,by)dby— [  fg g (by,by)dby|.
a?=12(m?+ 11m+ 30), (62) - - -
where the coefficienB,,, , constitutes either a deterministic or a (73)

random variable. Several cases allow closed-form evaluation aét B, and B, be independent random variables, E@3) be-
the reliability r, defined in the present circumstances as the probemes
ability that the natural frequency squar@f does not exceed a

x 2
pre-selected deterministic valu%, r:J fBz(bZ)[FBl by+ U_g _FBl(bz)}dbz (74)
r =Prol( Q%< w3)=Prol aB ,, 4< 03An). (63) o
. N . 2 2, 2
Let B, 4s=B be an exponentially distributed random variable @o| _ [ beteple
with density Fg,| b2+ o2 . fg,(by)db,

fg(b)=

1 b by
EB) exp — ﬁ , b=0 (64) FBl(bZ): J:xfBl(bl)dbl. (75)

and zero otherwiseE(B) being the mean value @. Likewise,

the coefficientA, =A has an exponential density Let B, be an uniformly distributed random variable with density

fg,(b)=(B—a)"t, if bie[a,p] (76)

and zero otherwise; likewise, the coefficidBg has an uniform
density

, a=0 (65)

1 a
fA(a)—mex —m

and vanishes i8<<0, with E(A) indicating the mean value &
SinceA is exponentially distributed the random varialabéA is fBz(bz)z(a— L if byelv,d]. 77)
also exponentially distributed with measfE(A). Likewise «°B
is an exponential random variable with meafE(B). The reli-
ability is obtained as

Let us assume that>§. Thus, the positivity ofQ? is always
checked sincd,>B,. We first calculate the expressions in Eq.

(75
2
wE(A) ( 2
= - . 0
" WIE(A) T a?E(B) (66) 0, byt 23=a
It is remarkable that although all coefficierfts (j=1, ...m) are w2
random, the probabilistic characterization of only a single coeffi- wg b, ( - _g) ) a)g
cientA,, turns out to be needed, in addition to thaByf, , for the Fg,| b2t —2|= o if a<b,+—3<p
reliability evaluation. B—a ’
8.2 Specified Flexural Stiffness Function. Assume now ) w3
thatm+1 coefficientsh; form a random vector with a joint prob- 1, if byt ?23
ability density fg(by, ... .bp+1). The remaining four coeffi- \ (78)
cientsby, byio, byis, byia are related with the above coeffi-
cients via Egs.(48), (53—(55). Due to the randomness of FBl(b2)=0
coefficientsB,, ... ..By11, We conclude, that the natural fre- ) . i
quency squared is itself a random variable From Eq.(74) it follows that for the reliability evaluation we
s need to find a region in which both32 and Fg, are nonzero. As
Q°=0%(B1~By) (67) Eq. (77) suggestsfg, is nonzero ify<b,<4. The functionFg,
whereo? is a coefficient differs from both zero and unity ifr— w3/ 0?<b,<B— w3l d?;
o?2=T721L%,. (68) Fg, equals unity ifb,>B— w%/oz. Thus, in order for the product

- . . . fg.Fpg. to be nonzero it is necessary and sufficient tiyabelongs
The coefficienta, in Eq. (68) can be treated either as a determin: B2 B1 o y 9
the two following intervals:

istic or as a random variable. For the sake of illustration, a paﬁQ
ticular case will be considered hereinafter, namely, whgiis a 1.=[76], l,=[a—wio?>]. (79)

deterministic variable. The mean natural frequency squared equals o ] )
It is natural to inquire when these two intervals have no intersec-

E[Q?]=0’[E(B;) —E(B,)] (69) tion. This takes place when the lower end of interkakbxceeds
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Fo,(byrwi/o?)

(b 1
1/5-) J2:(b) 7 1/(8-a)
0 y &5 a-wilo? @ B S
B-woz/(r 2

Fig. 1 Probability density functions of variables B, and B,, and the probabil-
ity distribution function ~ Fg; for e3<a?(a—6), leading to zero reliability

the upper end of intervdl, i.e., Whena—w§/02> S, orin terms wg
of w3, whenwi<o?(a—8) (see Fig. L In these circumstances pllo? by~ a—— s 1
the integrand in Eq(69), and hence the reliability both vanish r:f ——— db +f —_—
i q Y C B T ey

identically.

Assume now that the lower end of the interabelongs to the 20 2 OV 4 2 5 2
intervall 1, i.e., y<a— w3/ o?< 6 and, moreoverB— w3/ 0?=§ _(0B~wy)+20 5(f: Bt o y(o"y—2a0 +2w°>_
(Fig. 2. This implies that o2(a—8)<wi<cX(f—5). The 20%(6=y)(a=B)
sought region fob, is the interva[a—w?)/(rz,é]. The reliability (81)
is obtained as

\ We consider now the cas@— w3/ o?<y (Fig. 4), meaning
b _w(z) d?(B— y)<wi. The integration domain is the interviay, 8]
s R [0+ i s 1
)i D@ 2 255 B &0 r:frlaiydbfl- (82)

Con23|der now the following Casea_“’é/gZEV and y<B  There are two intermediate situations between the ones depicted
—wg/a?< 6 (Fig. 3 implying o*(a—y)<wg=0*(B—7v). The in the Figs. 2 and 3, depending on the lengths of the intervals
b, region is the interval y,5]. But to evaluate the reliability, this g—« and 5— . If the length —« of by interval is smaller than
region has to be split into the union of two regiofly,8 the lengthy— 5 of b, interval, then two quantitiesy— w2/ o2 and

—wplo?], [B—wglo? 5] since f””CtiO”FBl(b2+“’5/‘72) takes 3 ,2/42 belong to theb, interval as shown in Fig. 5. The reli-

value of unity atb2:,8—w§/02. Hence the reliability reads ability reads
) Fi(brtwi/o?)
1(5-) Jea(b) 1/(B-e)
’ % fufb
0 y a-wio® 8 @ B > b
,/3-u)02/0'2

Fig. 2 Probability density functions of variables B, and B,, and the probabil-
ity distribution function  Fg, for B—wﬁ/azz &, reliability is given by expression
(80)

1 FB](b2+a)02/02)

1/(69) 1/(B-a)
O e r / IR
Y 4

L)
o B ?

a-wolo? B-weo?

Fig. 3 Probability density functions of variables B, and B,, and the probabil-
ity distribution function ~ Fg; for @— w3/ 0?=y and y<pB— w3 o?<s; reliability is
given in Eq. (81)

! Fri(brtei/o%)
- 1/(5-
(G- B-a)
W % SB2b3) Sufdy) ,
0 ) v 2
a-wea? Y * k
B-wptlo?

Fig. 4 Probability density functions of variables B, and B,, and the probabil-
ity distribution function  Fp; for B—wﬁ/azs y; leading to unity reliability
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1 FB](b2+a)02/0"2)

o) o 3
148-y) %Bzm 77/ (6-2)
: SB1(by)
y § >

o B > b

a-wylo? B-wpHo?

Fig. 5 Case when length B—a of B, interval is smaller than the length of B,
interval; reliability is given in Eq. (83)

wg ity is identically unity. Likewise, the minimum natural frequency
b wdlo? by~ ( a— ?) 5 1 squaredw?,,=d*(a—4). If this value exceedy= w3, then obvi-
r:J 0 —db2+J ——db, ously f_or any_pairs of values in i_ntervzallas:L ande, _the_ i_nequality
a-w¥o? (6= 7)(B—a) B-w2o?0" Y (72) will be violated, with resulting vanishing reliability.

5 5 On the other hand for exponentially distributed variables, unity

_0(26—a—p)+2w, reliability is never achieved, as E(66) suggests.
202%(5—v)

If, however, the length3—a of b, interval is bigger than the 9 Nature of Imposed Restrictions

length y—& of b, interval, the sought region is illustrated in Fig. In this paper, in order to obtain the closed-form solutions for

(83)

6, and the reliability is expressed as follows: natural frequencies deterministically and/or stochastically inho-
w2 mogeneous simply supported beam, the flexural stiffness and the
s0o—| a— _g) _ 2 inertial coefficient were assumed to be polynomial functions
_ o db,— o~y n W0 whose powers differ by four. One should stress thatatend b
r= L (6—y)(B—a) 27206—-y)(B—a) AB-a) coefficients in Eqs(2) and(3) cannot be specified independently

(84) in order for a closed-form solution to exist. It is quite interesting
o o ] to comment on the physical meaning of this restriction. Does it
The coefficients of variations; andc, of random variable$;  sjgnify thata and b coefficients and therefore the inertial coeffi-

andB;, respectively, cient and flexural stiffness must depend on each other? To reply to
= =y this question consider a classical case of the closed-form solution,
Cl:m’ Cz:m (85) reported for nonlinear stochastic dynamics. Nigathstudies the
E(By) E(B2) following set of equations:

are chosen to be equal t@=c,=c. This implies that for a speci- - : _ o
fied coefficient of variatiort, the upper bounds of the interval are YJ+'BJYJ+‘?W‘?YJ_QJ’(U' j=12,...n 87)
related to the lower bounds, as follows: where Y;=generalized forces,3;=damping coefficients,V
=potential function, Q;(t)=generalized forcespn=number of
1+v3c 1+v3c degree-of-freedom. Then the Fokker-Planck equation is con-

T he VT (86) " structed that is not reproduced here. Nigihnotes
“Assume that

ais fixed at 14,y is fixed at 1. For the coefficient of variation 0.3, )
the unity reliability is manifested foy=43.286. Values associ- Bjl®;=1y for every j, (88)
ated with transition to the unity reliability for the coefficients of 5,4 define
variation of 0.4 and 0.5, are, respectively=76.151 andy
=193.994. 1<

It should be remarked that the transitional valuesydfom H= 52 Z 0t V(21,2 - . Z0), (89)
nonunity to unity reliability can be predicted, for the uniformly =1
distributedB; and B,, without resort to the reliability calcula-  then the solution can be expressed as
tions. As the natural frequency squared is proportional to the dif- .
ference ofB; andB, in Eq. (67), the largest value of the natural P(Z1,22, -+ - Zns1y -+ - Z2n) =Cexd = (y/mH]"  (90)
frequency is obtained wheB, takes on the value of the upperwherep is the probability density function andt; is the spectral
bound of the interval 3 whereasB, takes on the value of the density ofQ;(t). As is seen the closed-form soluti¢80) is ob-
lower bound of the intervay. Thus, if the maximum natural fre- tainable when the ratios between tlener characteristics—
quency square@%axzf(ﬂ— v) is smaller tharyzwé, then the damping coefficients of the system on one hand and the spectral
inequality in Eq.(71) is satisfied automatically; hence the reliabil-densitiesP; of externalexcitation on the other, satisfy the condi-

1 Fei(brtwi/o?)
1/(6-y) ¢
1/(B-a)
fa2(b2) v A fub) ,
0 Ly ') a B B
a-wolo? B-willo?

Fig. 6 Case when length B—a of B, interval is bigger than the length of B,
interval; reliability is given in Eq.  (84)
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tion given in Eq.(88). This indicates that when these characteris- The natural question arisds:it possible to formulate the prob-
tics have a common numerical parameter then the closed-folem so as to obtain a unique solut®iThe reply to this question is
solution is derivable. The conditiof88) is necessary for the so- affirmative. Indeed, one can pre-select not only the fundamental
lution to be given by Eq(90) which was the first derived by mode shape, but also the fundamental natural frequency denoted
Ariaratnam([8] for systems with two-degrees-of-freedom and wabky w;. Then the Eq(46) yields the coefficienb,,, , that accom-
extended to multi-degree-of-freedom systems by Cauf®eyor plishes this goal
other closed-form solutions of this and other kinds, the reader may
consult for example, with works by Dimentbefg0], Soize[11], bm+4:w§amL4/12(m2+ 11m+ 30). (91)
Scheurkogel and ElishakofiL2], and others. The polynomial expressions have been used prior to this study
One should stress that the importance of the derived closgd-deterministic analyses; yet, to the best of authors’ knowledge,
form solution is not diminished by the fact that certain conditiongis is the first collection of closed-form results in either determin-
must be met. The appearance of conditions is natural too. Indeggic or probabilistic setting for the natural frequencies and asso-
it can be expected that the solution of fheerseproblem would ciated reliabilities of inhomogeneous beams.
depend upon the part or entire given data. Thus, if the inhomoget is also notable that whereas in usual finite element method in
neous beam has a polynomial inertial coefficient with given coedtochastic setting, only small coefficients of variation can be al-
ficients, it must be no surprise that the sought flexural stiffness fefved, the present formulation is not bound to small coefficients
the beam possesses the pre-selected mode shape, that is dirgetariation. Therefore, the deterministic and probabilistic closed-
related to the specified inertial coefficients, in order to derive thgrm solutions that were uncovered in this study can be utilized as
closed-form solutions. benchmark solutions.
The following question arises: Is there any resemblance in the
previous literature to the type of thinking adopted in this paper?
The connection with the previous work was found via Sainf\cknowledgment
Venant'ssemi-inversanethod. As Timoshenkfpl3] writes: This study was performed when Mr. Suleyman Candan was a
“In 1853, Saint-Venant presented his epochmaking memofisiting Research Scholar at the Florida Atlantic University. The
on torsion to the French Academy. The committee, con&uthors appreciate the anonymous reviewers whose inquiries led
posed of Cauchy, Poncelet, Piobert, and Lamere very to writing Section 9. The helpful discussion with Dr. Joseph Neu-
impressed by the work and recommended its publicatioinger and Mr. Denis Meyer is gratefully recorded.
... In the introduction Saint-Venant states that the stresses at
any point of an elastic body can be readily calculated if thAppendix A
functions representing the componentsv, andw of the ) .
displacements are knaw . . Saint-Venant then proposes the Case 1:m=0. In this subcase, the expressions7of{) and
semi-inverse metholly which he assumes only some fea(é) read(Al)
tures of the displacements and the forces and determines the 4
remaining features of those quantities so as he ask by all the R(£)=ag, D(£)=, bié. (A1)
equations of elasticity. He remarks that an engineer, guided =0
by the approximate solution of the elementary strength
materials, can obtain rigorous solutions of practical impo
tance in this way.” 8 4
Indeed, Saint-Venant in 1853 postulated the prior knowledge of -12 2 i(i+1)b;,&+12 2 i(i—1)b;&
the two displacement functions= 6zy and v = 6zx, and then i=1 i=2
determined the functiow= 6¢(x,y) wherep(x,y) is some func- 4 3
tion of x andy determined from basic equations. In the present A e g
paper we essentially utilized a semi-inverse method: We assumed +24 ;) big'—24 ;) Wi+ 1)birag
the knowledge of the mode shape and derived the stiffness from
the basic equations. It appears that the clarifying comments in this

gy substituting the latter expressions in Ef), we obtain(A2)

4

section further enhance the usefulness of this study. +48 21 ibié'—kL'ag(é-2£3+¢H=0.  (A2)
=
10 Conclusion The Eq.(A2) has to be satisfied for argy This requirement yields
(A3)—(A7)

The described class of deterministic and stochastic solutions
contains infinite number of closed-form solutions. Indeed, the de- —24b,+24by=0 (A3)
greem of polynomial in the expression of the inertial coeficient in _ i kA —
Eq. (44) can be chosen arbitrarily. Likewise, the coefficieats 720+ 720, —k2=0 (A4)
can be prescribed at will subject to a condition of positivity of —144p5+144p,=0 (A5)
both R(¢) and D(§). 4

It should be noted that there is a connection between the present — 240, + 2403+ 2kL"ag=0 (A6)
work with the subject of “inverse problems” of vibratidi4,15]. 3600, kL*a,=0. A7)

Indeed, whereas mathematical “direct problems” consist of find- _ o . )
ing solutions to equations with knowimput parameters, math- To satisfy the compatibility equationls,, wherei ={0,1,2,3, has
ematical “inverse problem” deals with the reconstruction of théo be

parameters of the governing equations whendtgutquantities b.=3b (A8)
are known. According to Gladwell15], “inverse problems are 1 4

concerned with the construction of a model of a given type; e.g., bo=3b, (A9)
a mass-spring system, a string, etc; which has given eigenvalues

and/or eigenvectors or eigenfunctions; i.e., gisgectraldata. In bs=—2b, (A10)
general, if some such spectral data is given, there can be no sys- b,=—2b, (A11)

tem, a unique system, or many systems, having these properties.”

It is remarkable as the present study demonstrates, that there ekssum up, if conditionsAl) are satisfied, wherb; are given by
infinite beams, corresponding ©=0,1,2 ..., that possess the Egs. (A8)—(A11), then the fundamental mode shape is expressed
fundamental mode given in E¢L9). by Eq.(44), where the fundamental natural frequency re@d)

Journal of Applied Mechanics MARCH 2001, Vol. 68 / 183



w?=360, /a L*. (A12) 5 _ 6 _
_ _ —12 > i(i+1)bi.£+12 > i(i—1)b&
Case 22m=1. In this subcase, the expressionsk(f) and i=1 i=2

p(¢) read, respectivelyAl3), 6 5 6

5 +24 >, biE—24 D, (i+1)bj,,£+48D, ibé
R(&)=agtasé, D(&)=2, b€ (A13) e e o
e —kL*(agt+a ¢+ a¢?)(é-28+¢H=0.  (A28)
The Eq.(A14) has to be satisfied for ang. This requirement
yields (A29)—(A35)

By substituting the latter expressions in Ef), we obtain

4 5
—12 > i(i+1)bi. £ +12 D i(i—1)b;&
=1 i=2

—24b,+24by=0 (A29)

5 . —72b,+72b,—kL%,=0 (A30)

+24 > biE—24, (i+1)b & —1440,+ 1440, kL%a;=0 (A31)
i=0 i=0

5 — 24, + 2405+ 2kL*a,— kL*a,=0 (A32)

+48 ) ib& —kLag(é— 263+ ¢%) — 36005+ 3600, + 2kL%a; —kL%ay=0 (A33)

i=1
_ 4, 1 ds —
KLfaE(e— 265 £ =0, (A14) 504bg+ 50405+ 2k L%a,— kL*a, =0 (A34)
67— kL*a,=0. (A35)

The Eg.(Al4) has to be satisfied for ang. This requirement

yields (A15)—(A20)

To satisfy the compatibility equations;, i={0,1,2,3,4,5 has to

be
24p;+24by=0 (A15) 5a,—4a,
. bs= — —=———Dbg (A36)
—72b,+72b;—kL*ay,=0 (A16) 3a
4, _ 25a,+36a; — 284
— 144b3+ 144b2— kL a; = 0 (Al7) b4: _ 2 15ai 0 bG (A37)
— 2400, + 2405+ 2kL%ay=0 A18
4 3 0 (A18) _ 17a,—36a,— 564, . g
— 36005+ 360, + 2kL%a,; — kL*a,=0 (A19) s 15a, 6 (A38)
— 4 = 17a2+ 34a1 - 56&0
504b5+ kL g 0. (AZO) ,= 15, 6 (A39)
To satisfy the compatibility equationb;, i={0,1,2,3,4, has to
be 1762— 36a1+ 84&0
=————————bg (A40)
15a,
9al— 7ao
by=——5—bs (A21) 17a,—36a,+84a,
1 =—F——Dg. (A41)
0 15a2 6
== w bs (A22) Tosum up, if condition$A27) are satisfied, where; are given by
53, Eqgs.(A36)—(A41), then the fundamental mode shape is expressed
by Eq. (45), where the fundamental natural frequency reads
17a;+ 28a,
2=———bs (A23) w?=672g/a,L?. (A42)
10a,
17a, +42a, References
1= 10a b5 (A24) [1] Eisenberger, M., 1997, “Dynamic Stiffness Vibration Analysis of Non-
1 Uniform Members,” International Symposium on Vibrations on Continuous
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To sum up, if condition$Al3) are satisfied, where, are given by

Eqgs.(A21)-(A25), then the fundamental mode shape is expressed

by Eq.(45), where the fundamental natural frequency re@&6)
w?=504bg /a;L*. (A26)

Case 3:m=2.
D(é) reads(A27)

In this subcase, the expressions?f¢) and

6
R(=agtai+ad, D=2 be.  (A27)
=
By substituting the latter expressions in Ef), we obtain(A28)
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Exact Solutions for Out-of-Plane
Vibration of Curved Nonuniform
s.v.Lee' | Beams

Professor

J. C. Chao The governing differential equations for the out-of-plane vibrations of curved nonuniform
Graduate Student beams of constant radius are derived. Two physical parameters are introduced to simplify
the analysis, and the explicit relations between the torsional displacement, its derivative
Mechanical Engineering Department, and the flexural displacement are derived. With these explicit relations, the two coupled
National Cheng Kung University, governing characteristic differential equations can be decoupled and reduced to one

Tainan, Taiwan 701, R. 0. C. sixth-order ordinary differential equation with variable coefficients in the out-of-plane
flexural displacement. It is shown that if the material and geometric properties of the

beam are in arbitrary polynomial forms, then the exact solutions for the out-of-plane
vibrations of the beam can be obtained. The derived explicit relations can also be used to

reduce the difficulty in experimental measurement. Finally, two limiting cases are con-

sidered and the influence of taper ratio, center angle, and arc length on the first two

natural frequencies of the beams are illustratefOIl: 10.1115/1.1346679
1 Introduction difficulty in handing the problems with other kinds of boundary

Curved beam structures have been used in many civil mechaC?-nditionS' Hence, curved nonuniform beam problems have been
: i L2 Y . Uldied mainly by approximate methods such as the Rayleigh-Ritz
cal, and aerospace engineering applications such as spring de

curved wires in missile-guidance floated gyroscopes, curve hod([10]), the lumped mass approadt.1]), the transfer ma-

girder bridges, brake shoes within drum brakes, tire dynami reé?\e;l:]r?gti(cgﬁz;g{ettﬁcenc[ﬂlrg]tf element method, and the discrete
stiffeners in aircraft structures, and turbomachinery blades. It can s paper, the governing differential equations for the out-

al_so be used as a simplified model of a shell structure. Researc%]i_rblane vibrations of a curved nonuniform beam of constant ra-
th's. area can be traced back_ to the 19th cenfily2]). An inter- dius are derived via Hamilton’s principle. By introducing two
esting review can be_f(_)und |n_the papers by Markus and Nan?)ﬂysical parameters, the analysis is simplified and it is found that
3], _Laura and Maurizi(4], Chidamparam and Leiss®], and the torsional displacement and its derivative can be explicitly ex-
Auciello and De Ros6]. . Lo essed in terms of the flexural displacement. With these explicit
In general, the out-of-plane and the in-plane vibrations Qfations, the two coupled governing characteristic differential
curved b‘?ams are coupled. However, based on the I_3ern(_)ull|-E uations are decoupled and reduced to one sixth-order ordinary
hypothesis, if the cross section of the curved beam is uniform agfeential equation with variable coefficients in the out-of-plane
doubly symmetric, then the out-of-plane and the in-plane vibrgg,y ra| displacement. It can be shown that if the material and
tions are |ndeper_1derﬁ_ﬁ7]). ) eometric properties of the beam are in arbitrary polynomial
Out-of-plane vibrations of curved beams have been studied Ry s “exact solutions for the out-of-plane vibrations of nonuni-
many investigatord[5]). The associated governing differentialio m curved beams can be obtained.
equations are two coupled differential equations in terms of the is worth mentioning that by employing the explicit relations,
out-of-plane flexural displacement and the torsional displacemegge only has to measure one variable instead of measuring two
It is known that if the beam is uniform, then the coefficients of thgaiaples simultaneously in the experimental study of the curved
differential equations are constants. After some simple arithmefig;m. Hence, it greatly reduces the difficulty in experimental
operations, the two coupled differential equations can be reducg@asurement.
to a simple sixth-order ordinary differential equation with constant \when the radius of a curved beam becomes infinite, the curved
coefficients in the out-of-plane flexural displacemef,7]). peam reduces to be a straight beam. Consequently, by setting the
Hence the problem can be solved by different analytical methoggiius to be infinite, the sixth-order differential equation in terms
and the exact solutions can be obtairied2,7,8). However, itis  of the flexural displacement should reduce to a fourth-order dif-
not the case for the nonuniform beams. ~ferential equation. However, it is not possible to perform this lim-
Due to the complexity in the coefficients of the governing difiting process from the reduced sixth-order ordinary differential
ferential equations, the two coupled differential equations nevghuation for the beanf2,7]) and the limiting study had never
have been reduced into one sixth-order ordinary differential equgeen successfully explored before. In this paper, by employing the
tion. Exact solutions for the curved nonuniform beam problem agspliicit relation, the limiting study for a curved nonuniform beam
only found in the work by Suzuki, Kosawada, and Takah#8hi s successfully revealed. Finally, the influence of taper ratio, cen-

who gave an exact series solution to the beams with the sagagangle, and arc length on the first two natural frequencies of the
boundary conditions at both ends. Nevertheless, their method pa$ms are studied.
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u.(r,s,z,t)=v(s,t) +zep(s,t),

av(s,t)_zaw(s,t)

r,s,z,t)= t)—r
uF}( 'S$,Z, ) U(S, ) Js Js ’

1)

u,(r,s,z,t)=w(s,t)—r¢(s,t),

whereu, , u,, andu, denote the displacements of the beam in the

r, 6, andz directions, respectivelys=R# and ¢ is the torsion

angle.u, v, andw are the neutral axis displacements of the beam

in ther, 6, andz-directions, respectively. Substituting Eg) into
the strain-displacement relations in cylindrical coordindféd])

e

v
Js?

¢ w
R 9%

au
—+
s

v

al

' R

€p9= —

(8q§+ 1 ¢9W)
Yio=Z ST R e )
s R ds
)
dp 1w
=N G5 TR s
€ = €,,= €,,=0.

Here, €,, = €,,=0 is consistent with the standard assumption i
the thin beam theory that the normal stresses are negligible.

The potential energy and the kinetic energy of the beam are

1 (L
V=73 fo L(Eef,,,JrGyf,,JrGyf,z)dAds

B LE Pvl¢p Pw N au+u) ¢ Pw
"ol MasT\R wsZ) T2 s T RINRT 92
v u . v d+l LEI Pv\?
1552 \ 35 TR} |93 2 ), | T 52
£ ¢ w2 EA au v 2d
TEHRT 37) TR G TR |98
T e R 2d 3
2 J, os Roas) O ®)
and
T*l ) A(&u 2+ w 2+ &W2+J 2d 4
=2, 1P 5] e —0) TPl 5] (ds @)

¢

cross section A

Fig. 1 Geometry and coordinate system of a curved nonuni-
form beam of constant radius
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respectively, wherex,~ a, and §; are given as

al:j rzdA,
A

ay= f ZdA,
A

A

E(s) is the Young’s modulusG(s) is the shear modulug\(s) is

the cross-sectional areh,is the length of the neutral axis, and
p(s) is the mass per unit volume of the bealp(s) and I ,(s)
denote the area moments of inertia of the beam section about the
r and z-axes, respectivelyG(s)J(s) is the torsional rigidity.
When the beam cross section is circull(s) is the polar moment

of inertia about theg-axis ([15]).

Via Hamilton’s principle, the governing differential equations
and the boundary conditions of the system can be derived. It can
be shown that if the cross section of the beam is doubly symmetric
about ther and z-axes, then the terma;~ a, will vanish. As a
result, the out-of-plane and in-plane vibrations of curved nonuni-
{ﬁrm beams are independent. This conclusion is consistent with

at for the curved uniform beam theofyr]).

The governing differential equations for the out-of-plane vibra-
tions are two coupled differential equations expressed in the out-
of-plane flexural and the torsional displacements

®)

4

+

’

=pAw,

1 " 1 ! 1 !
El, ﬁqﬁ—w GJ §¢ +¥W

©)

1 ' 11 .
GJ( b+ ﬁw/) —Elr(ﬁqﬁ— ﬁw”) =po,

where the primes denote differentiation with respect tostlari-
able. The governing differential equations for the in-plane vibra-

|

1 1 .
—EA ﬁu’-i-@v =pAv.

tions are

’

+

’

1 .
" u'+=v|| =pAu,

EA R

1 1
El, Qu’—ﬁv

1
El, ﬁu’—v”

)

"

They are two coupled differential equations in terms of the in-

plane flexural and the longitudinal displacements.

3 Out-of-Plane Vibrations
For time-harmonic out-of-plane vibrations of curve beams with

angular frequency), one assumes

P(s,t)=D(s)e"™,
w(s,t)=W(s)e'

®

The coupled governing characteristic differential equations for the
out-of-plane vibrations of a curved nonuniform beam are

1 " ! 1 ’ 1 ’ , 2N —
[Elr(ﬁCb—W +|GJ ﬁfb +—R2W +pAQ“W=0,
9
’ 1 ’ ' 1 1 " 2
[GJ((I) oW ” —Elr(—RZCI)—ﬁW )+pJQ d=0.

(10

The associated boundary conditions ars-a0l andL:

’

ﬁCD—W

r{go-w)

1 1
+GJ(§<I>’+ W’):O or W=0,

R?
(11)
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El (1c1> W”) 0 or W=0 (12) ! W'+ JQZ[al L Tw +FZW)}, !
—_— —_ = O|’ = , —_ —_—— | — —_— —,
"R R TP ale \RGI by /| T pugi(1-ap)
1 1
GJ <I>’+§W’)=O or ®=0. (13) x[(l—a1+a§a3)FZW+ R—GJ[pW(l—a;)—ai(Elr)"]TW]—o. (21)

If the beam is clamped at the boundary, then the boundary cong;q boundary condition&l1)—(13) in terms ofW are
tions arew=0, W' =0 and®=0. If the beam is free at the bound-
ary, then the other identities in Eq4.1)—(13) are specified. a;[1 ( Tw sz”'
r — 5=t
[ { 9: \RGJ py
1

+ !
Pwdi(1—ay)

a,
3.1 Governing Differential Equation in Terms of the Flex-

. 1
ural Displacement ParameterW [ (1—a}+a%ag)Fu+ Tehh [pw(1-a})

3.1.1 Nonuniform Curved BeamsTo simplify the analysis,

one defines two physical parameters ! 111/ T F !
prysical P —a%(Em"]TW}—w"] +ea[a—4 a(—Rgf p—W”
’ ’ u w
Tw=|Gl—=| +tEl,— 14
W( R R o p— B s L twlce @2
" puda(1-ap "> * RGJI V| R?
Fou=(ELW")"—| GI—=5| —pAQ2W, (15)
R or
whereT,, andF,,, are the torque per unit arc length and the force _
per unit arc length in the-direction, caused by the flexural de- W=0, (23)
flection parameteYV, respectively. In terms of,, andF,,,, EQs. ,
(9)—(10) can be rewritten as a1l ( Tw N @) . 1
24|91 \RGJI py Pwdi(1—ay)
Ly gy Faw T (16)
R R gipw  91RGJ’

1
X [ (17a5_+a§a3)sz+ ﬁ'[pw(lfai)fai(Elr)”]Tw
1 as (El)”

" __ az !
where p,,, 01, &1, a,, and a; are referred in the Appendix. or

Substituting Eq(17) into the equation resulted from differentiat-

ing Eqg. (16), the relation betweed” and W can be obtained. W’ =0, (25)
Substituting the result into Eq§l6)—(17), one can explicitly ex-

pressb and®’ in terms of the flexural displacemewt parameter and

1 1 ay (El)" 11/ T Fu ] a (El,)"
S®'= gyt —————|aF = T, (18) | [ T L S
R a, " poy(1-ap |2 RGI " (18) a, gl(RGJ pW” T pwor(i-a) F 2w~ Rgy Tw
Ly 2100 ! {(1 {+alay)F !
—Pp=— ———i(l—aj+aja W =
R a, Qw Pugi(1—a)) 1T A3/ zw + RZW 0 (26)
L pu(1-al)—a2(El)T @ag)
RGJ w 1 1 r w
a; |1 T F ! 1
where _1_(_W+ﬂ” P
LT - ) a4]91\RGJI - py Pwd1(1—ay)
w zw
q :{_( +_) (20) ’ 1 ’ "
"l [RGI" by, X (1-aj+afag) Fout 5oy [Pu(l-ap) —ai(El)"]T,
anda, is given in the Appendix. Substituting Eq4.8)—(19) into
Egs. (9)—(10), one obtains two uncoupled sixth-order ordinary — =0. (27)

differential equations. After making some arithmetic operations
with the two sixth-order equations and E¢$8)—(19), it can be oe
found that they are dependent. Thus, the uncoupled governi?‘ngfazf
equation in the lateral displacement param#teis

3.1.2 Curved Uniform Beams.For curved uniform beams,
0,a,=0 and

__El, p0? -
111/ T, Full a3—gl——RZGJ— < (28)
e\ RGI by
ALt v T, andF,,, now are rewritten as
_‘._L aF _(ir)”'r j|+iw”], W/r er
pudi(l—a) | ¥ RGJ V| R? Tw=GJ 5 +El—. (29)
El[l[al 1( Tw +sz”'+ 1
- " "R?]a, |09, \RGJ " p, pug(1—al) w’
41901 Pw pwgl(l al) FZW:ElrWW’_GJ?_PAQZW- (30)

X

1
_ ! 2 . Al __ a2 "
(1=ar+aras)Fayt RGJ[pW(l ay)—ai(Ely) ]TW] Consequently, the governing E@1) reduces to
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w2, pQ? wre] X pQ? (A R | d®Y(x) . d°Y(x) N dY(x)
Arte MR EL TR SolX) g T el T et T
AQ% (1 J pQ? +eg(x)Y(x)=0.
+p_(_2__,p_)w=o’ (31) 6( ) ( )
GJ \R® I, E xe(0,1). (40)

If the extension effect is not considered, i.E.js infinite but  and are in the polynomial forms, i.e.,
El, is finite, then in terms o§* =s/Rf,=s/L andW* =W/R8,
=WI/L, the governing differential Eq31) is reduced to

My

ep(x):E{) a,(x—X,)!, p=0~6 (41)

dsw* . pRZQZ) d4w* . pR4QZ( J ) d2w* i=
ds*® G ds 4 El, R?) | ds*? wherex, is a constant to be selected for the fastest convergence
Q2R 2()2 and 0<x,<1.m,, p=0~6 are integers representing the number
" PALR (1_ pIR ) _ (32) ©f terms in the series. Then one can assume the six fundamental
GJ El, solutions of the differential equation to be in the form(pE8])
where#, is the center angle and is the total arc angle of the curve 1 *
ng]lm. This equation is exactly the same as the one given by LeeY;(x)= i—'(x—xo)i+ EAq,i(X_Xo)qr i=0~5, n=6.
. : g=n

. . . (42)
3.1.3 Straight Nonuniform BeamsWhen the radius of a _ . . '
curved beam becomes infinite, the curved beam becomes straigr\{l?smu“n,g Egs(41)—(42) into Eq. (40), collecting the coeffi-
Consequently, by setting the radius being infinite, the reduc&lfNts Of like powers, the following recurrence formula can be
six-order differential Eqs(21), (31)—(32) should reduce to fourth- OPtained:

order differential equations. However, it can be found that it is not (q—n)! g-n (q-K)!
possible to take such a direct limiting study. In this section, bYAqi= - ’ [ . AokAqk.
employing the explicit relatiori19), the limiting study is revealed ’ (ahago | =1 (@—k—n)! ™ ’
in the following: n
By letting R being infinite in Eqs(14)—(15), T,, andF,,, yield N E 1 a .
to i (i—n+m)t “mamm=t
T,=0 33 -
w ’ ( ) q-n (q—k)!
Fow=(EILW")"— pAQ2W. (34) +k2m G—Kk—ntm! amk-mAq-ki|[» d=Nn, n=6.
Equation(21) becomes (43)
GJ i Fow ' a;ag ' With this recurrence formula, one can generate the six exact
a, \ g1Ppw pwgi(1—a;) " fundamental solutions of the governing characteristic differential
S equation. After substituting these fundamental solutions into the
02 a;| Fw|' l—ajtajas _ associated boundary conditions, the frequency equation and natu-
+pd a_4 U1Pw Pugi(1—aj) 2" =0. ral frequencies of the beams are obtained, consequently.
(35)
Equation(19) now is 4 Numerical Results
i Fow '_ —aiag 36 To illustrate the previous analysis, the out-of-plane vibrations
as\gipw) pugi(1—aj) =V (36) of a curved nonuniform beam of circular cross section are studied.

_ . . _ The following dimensionless parameters will be used in the fol-
Substituting Eq«(36) with Eq. (35), the sixth-order governing lowing numerical analysis:

differential Eq.(21) can be reduced to

R
Fou=(EL,W")" = pAQ?W=0. 37) RE=—57
By settingR being infinite, the boundary conditions Eq4.1)— ’
(12 become o P(S)A(9)
m(s )——0 A0)’
(EILW")'=0 or W=0, (38) p(0)A(0)
W'=0 or W' =0, (39) by(sF)= 2 DA
G(0)J(0)’
Equation(37) and Egs.(38)—(39) are the governing differential (0)3(0) (44)
equation and the associated boundary conditions for the flexural «_ E(s)l(s)
vibration of a straight nonuniform beaffil7]). bry(s*)= G(0)3(0)
It should be mentioned that for a straight beam, the flexural and
the torsional vibrations are independent. Upon lettRdeing L,=Rj} 6q,

infinite, Eq. (37) can also be reduced from E@) directly.

[G(0) |?
ABZ Q/ 0 L21| ,
3.2 Exact Fundamental Solutions and Frequency Equa- P(0)
tion. The uncoupled governing characteristic differential equavherey, is the radius of gyration about theaxis.
tion, in terms ofW, for the out-of-plane vibration of curved non- In Table 1, the first out-of-plane natural frequencies of
uniform beams can be expressed as a sixth-order differenti#mped-clamped curved beams are compared with those in the
equation with variable coefficients in the form of existing literature. It shows the results are very consistent.
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Table 1 The first out-of-plane natural frequencies of curved 13

uniform beams with clamped-clamped ends 1231 [
1.089 [\
o b;4(0)=0.615 b,4(0)=1.0 b(0)=2.0 1005 F
0 o
(degre¢ R # & # & # & * 0854 M\,
0 = 22.373 22.373 22.373 22.373 VAo 07 |
90 50 20.840 20.694 20.363 - C

180 50 18.379 18.361 18.132 18.128 17.564 17.566 -
270 50 17.767 17.765 16.877 16.875 15.343 15.342-

*: exact frequency parametprin Rao[19].
#: a® KX, in Volterra and Morell[20].
&: ¢A, shown in the present paper, where L, /b, ,(0)

01 L L 1 1 i1 L 1 1 1 L
5 17.5 30

Dimensionless arc length

In the following, the natural frequencies of linearly tapereffig- 4 The influence of dimensionless arc length on the first

curved beams with clamped-free ends are studied. The matefligjensionless natural frequencies A, of clamped-free beams
P LgL various taper ratio (b,4(0)=1.5, 6,=60deg; ——: 5=0;

and geometric properties of the beams with taper ratiare Y't

M(s*)= (1~ ns")?%, by(s*)=(1~ 7s*)? and by,(s*)=b,,(0) I $7m09
X(1— 5s*)*, respectively. 29
In Figs. 2 and 3, the influence of taper ratio and curvature 2889 [~
(center anglgon the first and the second dimensionless natural AN
frequencies|A’, of the beams with constant dimensionless arc 2383
lengthL ,=30 and various center anghg is shown. For the beam 18
with center anglé), being zero, the radius of the beam is infinite. «//\_e 18 [
It represents a straight beam. The ones in the figures with cross 1726 [

mark are the dimensionless natural frequencies of a straight uni-
form beam and are consistent with the exact solutions given by

0.21

I A

N Ob%f,_..---""'””

0.153]
0.1467.
0.144

0.13 ] : . . ’ .
0 0.2 0.4 0.6

Taper Ratio

Fig. 2 The influence of taper ratio on the first dimensionless
natural frequencies A, of clamped-free beams with various
center angle 6, (Ly,=30, b,(0)=1.5; 6,=0 deg;
——————— i 0,=20deg; — — — 0,=40deg; * * * *: ,=60deg)

0.81 1
Ag 0803 "

PR IR S O U T W W |

0.71 T , y . T
0.2 0.4 0.6

Taper Ratio

o

Fig. 3 The influence of taper ratio on the second dimension-
less natural frequencies A, of clamped-free beams with vari-
ous center angle 6, (L,=30, b,y(0)=15 —— 6,=0deg;
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0.7

5 175 30
Dimensionless arc length

Fig. 5 The influence of dimensionless arc length on the sec-
ond dimensionless natural frequencies of clamped-free beams
with various taper ratio  (b,4(0)=1.5, 6,=60deg; ——: 5=0;
— — = 3=02;- - p=04; ———— . »=0.6)

Meirovitch [17]. From Fig. 2, it can be observed that the first
natural frequencies of the beams with the same center angle in-
crease as the taper ratio is increased. Those of the beams with the
same taper ratio increase as the center angle is increased. Figure 3
shows that the influences of taper ratio and curvature on the sec-
ond natural frequencies are quite different from that on the first
natural frequencies. The second natural frequencies of the beams
with the same center angle decrease as the taper ratio is increased
and those of the beams with the same taper ratio decreased as the
center angle is increased.

Figures 4 and 5 show the influence of dimensionless arc length
L, and taper ratio on the first two natural frequencies of the beams
with constant center angled¢=60deg). From Fig. 4 it can be
found that the first natural frequencies of the beams with the same
taper ratio decrease as the dimensionless arc length is increased
and those with the same dimensionless arc length increase as the
taper ratio is increased. In Fig. 5 it shows that the second natural
frequencies of the beams with the same taper ratio also decrease
as the dimensionless arc length is increased. However, the second
natural frequencies of the beams with the same dimensionless arc
length will increase as the taper ratio is increased only when the
dimensionless arc length is approximately less than 13. Those of
the beams will decrease as the taper ratio is increased when the
dimensionless arc length is approximately greater than 17.5.

5 Conclusions

In this paper, two physical parameters are introduced to sim-
plify the analysis of out-of-plane vibrations of curved beams. The
explicit relations between the torsional displacement, its deriva-
tive, and the flexural displacement are derived. With these explicit
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relations, the two-coupled governing characteristic differential
equations are reduced to one sixth-order ordinary differential
equation with variable coefficients in the out-of-plane flexural dis-
placement. It is shown that if the coefficients of the reduced dif-
ferential equation are in arbitrary polynomial forms, then the exact
solutions for the out-of-plane vibrations of nonuniform curved

, GJ (GY)']? [(GYH']
oAz, | ET R TR oy
_2(Elr)’(GJ)’]
Puw ’

beams can be obtained. The method can be easily applied to the
problems with general elastically restrained boundary condmong
By employing the explicit relations, one only has to measure one
variable instead of measuring two variables simultaneously in the
experimental study of curved beams. Hence, the difficulty in ex-
perimental measurement can be greatly reduced. In addition, a
successful limiting study from the curved beam theory to the 1
straight beam theory is revealed. Numerical analysis shows the + {
influence of taper ratio, center angle, and dimensionless arc length

on the first two natural frequencies are quite different.
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Dynamic Analysis of a
- One-Dimensional
suasinewe. | POroviscoelastic Column

Technical University Braunschweig,

D-38023 Braunschweig, Germany . . . . . . .
The response due to a dynamic loading of a poroviscoelastic one-dimensional column is

A. H.-D. Cheng treated analytically. Biot's theory of poroelasticity is generalized to poroviscoelasticity
Department of Civil and using the elastic-viscoelastic correspondence principle in the Laplace domain. Damping
Environmental Engineering, effects of the solid skeletal structure and the solid material itself are taken into account.
University of Delaware, The fluid is modeled as in the original Biot’s theory without any viscoelastic effects. The
Newark, DF 19716 solution of the governing set of two coupled differential equations known from the purely

poroelastic case is converted to the poroviscoelastic solution using the developed elastic-
viscoelastic correspondence in Laplace domain. The time-dependent response of the col-
umn is achieved by the “Convolution Quadrature Method” proposed by Lubich. Some
interesting effects of viscoelasticity on the response of the column caused by a stress,
pressure, and displacement loading are studig®Ol: 10.1115/1.1349416

1 Introduction Cheng[9]. The extension to poroviscoelasticity of this solution

F id £ fluid infiltrated material h twiII be done in Laplace domain with the help of the elastic-
or a wide range of fluid infiltrated materials, such as wat€fg.,elastic correspondence principle.

saturated _'soils, oil impregna}ted _rocks, or air filled foams, the elas-yjith this solution, the frequency-dependent response of this
tic theory is a crude approximation. Due to presence of a secopgiymn due to an impulsive load can be studied with respect to the
interacting continuum, a different theory is necessary. The theqpfiuence of the viscoelasticity by taking the real part of the com-
of porous materials containing a viscous fluid, known as thslex Laplace variable to zero. Then, the response of an arbitrary
theory of poroelasticity, was introduced by Bfdf. In subsequent dynamical loaded system in time domain is given by the convo-
years, this theory was extended to the anisotropic &g and Ilution integral of the impulse response function and the time-
also to dynamicg[3]). Following this development, the dynamicdependent loading. This convolution integral is numerically evalu-
as well as the quasi-static analysis of a fully saturated poroated by the so-called “Convolution Quadrature Method”
continuum is possible. A comprehensive review of the quasi-stafi€oposed by Lubicli10]. The weights of this quadrature formula

theory in rock mechanics can be found in the work of Detourna?fe determined from the Laplace transformed impulse response
and Chend4]. unction and a linear multistep method. In this method, no solu-

In addition to the effect of the viscous fluid diffusion in thetion in time domain of the original problem is necessary. Through

. . . L . 3 series of stringent tests that includes a comparison with the
pores, the solid constituent, its skeletqn, and its |nteract|on.W|?]r? hly acclaimed Dubner-Abate-Durbin-Crump methedy..[11]
partially entrapped fluid can introduce time-dependent behavior

. st il Furth he rheol f fluid 12]), our experience indicates that the Lubich method is one of
viscoelastic material. Further on, the rheology of pore fluld caje most robust in performing the inversion of wave-like functions

exhibit viscoelastic behavior as well. This effect, however, willa; involves a significant number of cycles resulting from impact
not be taken into account in the study here. The implementation|ghding. This method has been, among other applications, suc-
the solid viscoelastic effects in the theory of poroelasticity wagessfully applied to a time domain formulation of the boundary
first introduced by Bio{5]. Further work on this topic was done element method[13]).

in the quasi-static case [B] and in dynamics if7], to cite a few.
The last cited paper generalized Biot's theory to partially saty- . .
rated continua. % Governing Equations

Recently, a representation of the poroviscoelastic theory basedollowing Biot's approach to model the behavior of porous
on rheological modeling at micromechanical level was publishétiedia, the constitutive equations can be expresseflys

by Abousleiman et al.8]. It was argued that to have a physically 2

consistent model, the rheology for the solid constituent and the 0ij=2Ge¢j;+| K- §G) €xk0ij — @ dijp (1a)
skeletal structure should be clearly separated, and then combined

to form a bulk continuum model. Based on this model, originally 2

in quasi-static range, the current work examines its dynamic re- {(=aeqt 7P, (1b)

sponses. The set of the governing differential equations for the
dynamic case are deduced for a one-dimensional column. TiRewhich oj; denotes the total stress,the pore pressures; the
corresponding analytical solution for one-dimensional column f&train of the solid framey the variation of fluid volume per unit

the poroelastodynamic case has been presented by Schanz'gfgfénce volume, and;; the Kronecker delta. In the above, the
sign conventions for stress and strain follow that of elasticity,
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF .”ar.“e'y' tensile stresses and strains are de.nOted posltlve. The Latin
MECHANICAL ENGINEERS for publication in the ASME GURNAL oF AppLiep  INdices takes the values 1, 2, 3 or 1, 2 in three-dimensional or
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Detwo-dimensional cases, respectively, where summation conven-
cember 12, 1999; final revision, July, 2000. Associate Editor: D. A. Siginer. Discugion is implied over repeated indices. The bulk material is defined
sion on the paper should be addressed to the Editor, Professor Lewis T. Wheellﬁy, the material constants shear modutiend the drained bulk
Department of Mechanical Engineering, University of Houston, Houston, . . . g
TX 77204-4792, and will be accepted until four months after final publication Oqaompre55|on moduluk. Biot's effective Stre$5 coefficient, the
the paper itself in the ASMEQURNAL OF APPLIED MECHANICS. porosity ¢, andR complete the set of material parameters.
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E In the explicit form of(2) and(3), the Kelvin-Voigt model can
be applied to each of the moduli, corresponding to different physi-
Er cal effects. In detail:

ol « ReplacingG by the complex modulu&(s) models a vis-
coelastic shear behavior of the solid frame.
* ReplacingKg by the complex modulu&4(s) models a vis-
Fig. 1 One-dimensional rheological three-parameter model coelastic behavior of solid grains against volumetric deformation.
This is necessary if the material has its own damping mechanism.
* ReplacingK by the complex moduluK(s) models a vis-
coelastic behavior of the solid skeleton against volumetric defor-
In the constitutive equations above the only damping effecfgation. Such a behavior can be caused, e.g., by micropores which
taken into account are caused by the interaction of the viscoa® not connected to the main part of the fluid. The fluid in mi-
fluid and the elastic solid. Introducing additionally viscoelasticitgropores can propagate through microcracks in the material caus-
is done by means of the elastic-viscoelastic correspondence p#ig damping due to the time required to reach localized
ciple, as shown by Biof5]. In a typical implementation in equilibrium. ~
Laplace domain, the material constants showfiljnare replaced ¢ ReplacingK; by the complex modulu&;(s) models a vis-
by the corresponding functions of the Laplace variable, i.e., thepelastic behavior of the fluid. This, however, will not be at-
become time-dependent. However, this approach provides littsmpted here for the following reasons: First, most pore fluids
physical insight into the rheological models introduced, becausech as water or air are not viscoelastic. Second, a viscoelastic
the effective stress coefficient or R, or the pair of coefficient® fluid can have shear stresses, which will interact with the sur-
andR in the partial stress formulation of BipF], have no simple rounding solid. These effects are not modeled in Biot’s theory. An
relation to the compression or shear behavior of the constitueragbitrarily generalization will not lead to a consistent theory.
Rather, considerations of constitutive relation at micromechanical

level ([4]) lead to a more rational model for our purpose Summarizing, in the following, a time-dependent compression

and shear modulus of the solidg(s) and G(s) and a time-

_ K dependent bulk modulu&(s) are taken into account. This leads
a=1- K_s @ to the poroviscoelastic constitutive equations in Laplace domain
and as
R QSZKng 3 &ijZZG%ij‘i‘ R—gé)%kkﬁu—&ﬁ,]f) (7a)
Ki(KeK)+ dRo(Ke Ky ®

where K¢ denotes the compression modulus of the solid grains P=ag ot ‘ﬁA (7b)
andK; the compression modulus of the fluid. With these expres- kk R P
sions we are able to discuss how to implement viscoelastic behav-
ior from a physical point of view. with

Next, viscoelastic constitutive equations are introduced. From .
the two most common representations of viscoelastic constitutive . K(s)
equations, the hereditary integral or the differential operator for- a(s)=1- -
mulation([14]), the differential operator formulation is suitable to Ks(s)
our purpose. The simplest model ensuring causal behavior is thgy
three-parameter model, sometimes referred to as Kelvin-Voigt
model(see Fig. 1L When the system is subjected to a step load, it . K RY(s)
instantly deforms in an elastic state characterized by the spring R(s)= - - SA - . (8)
constantE;. As time progresses, the resistance offered by the K¢ (Kg(s)—K(s)) + ¢pKg(s)(Ks(s) —Ky)

dash-pot diminishes and the system softens. At large times, the L Lo ~ .
apparent spring constant becontes E,E, /(E; +E,), which is Note, every formerly constant which is now indicated with is
smaller than the initial modulug,. The speed of the creep is@ function ofs, respectively, of time. In the following, it is as-
regulated by the dash-pot viscosijiy A characteristic time scale sumed thaK(s), G(s), andK(s) are modeled as a three param-
for the creep can be defined @s- u/E,. The appropriate consti- eter model using the correspondence relati®n

tutive relation is given as

. 1+qs . 1+0ksS & 1+qgs
M = =P M K(S)=K 17 Pis’ Ks(S)_K51+pkss’ (=G PgS’
p= ) = v ==
E,+E, Ei+E, E, 9)
d d 4)  This completes the constitutive equations for a poroviscoelastic
pro+to=E s+q—s) model. In the following, the functional argumeri) will be
dt dt dropped for brevity.
To find the elastic-viscoelastic correspondence, the differentialNow, the governing set of differential equations are achieved
Eq. (4) is transformed to Laplace domain by inserting(7) in the Laplace transformed dynamic equilibrium
F(ps+1)=E&(1+qs), (5) iy +Fi=ps?0i+ ¢ps?o; (10)

with £{f(t)}=f(s) denotes the Laplace transform, with the comand in the continuity equation
plex Laplace variables. Compared with Hook'’s law the elastic-

viscoelastic correspondence is clearly observed, SZJF Gi=0, (11)
1+qgs where p=ps(1—¢) + ¢p; is the bulk density, withps and ps
E_>E1+_ps’ (6) denoting the solid and fluid density, respectively. As well the

displacements of the solid are denotedtyand the relative fluid
where the right-hand side is often called complex modulus.  to solid displacements by;. In Egs.(10) and (11) and in the
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2
l »=-RI0 l”yz”‘)f ¥ Lo L0 (a-pysiy, =0, )
Spg R

with the modulusE =K + (4/3)G. The boundary conditions are

0,(y=0)=Uo, (y=0)=0

and

a(y=1)=—=Pq, p(y=1)=Pq, (18)

where an impulse function for the temporal behavifr) = 5(t),

with §(t) denoting the Dirac distribution, is assumed, together
with vanishing initial conditions. Each of the nonzero boundary
conditions in(18) represents a different type of loading. Due to
the neglected body forces, this is a system of homogeneous ordi-
Fig. 2 One-dimensional column under dynamic loading nary differential equations with inhomogeneous boundary condi-
tions. Such a system has been solved for the nonviscoelastic case
in [9]. Inserting in these solutions the elastic-viscoelastic corre-

) o . . spondence$9) leads to the solution of the poroviscoelastic prob-
following, vanishing initial conditions for all variables are aS1em above. As we are dealing with a linear problem the superpo-

sumed.F; are the bulk body forces which are neglected in thjtion principle is valid. Therefore, the solution can be divided in
following, as only perturbation from the hydrostatic state ighe three different load cases:

sought, andj;= ¢so; denotes the specific flux of the fluid. Fi-

nally, the derivative with respect to the spatial variakjés ab- ~ Stress Boundary Conditions. Gy(y=0)=0, a(y=1)=—Pq
breviated by (). andp(y=1)=0
Proceeding in taking Darcy’s law
pat ¢ o= — 0 do(e Y e BT
4=~ x| p,+s%pely+ ¢ s%; (12) E(dihs—ds\y) 1+e M
into account, where denotes the permeability and the appar- dy(ers(=y) —g sl +y))
ent mass density, the final set of differential equations for the - ST (29)
displacement$); and the pore pressufeare achieved, 1+e =%
. .1, (- .
Gl + | K+ 3 G|0y = (@= )P, —s*(p—Bpr)0i=0 - Podids | dg(e !V +e Mall*Y)
(13) E(dihg—dshy) 1+e 2
B $%s dy(e M=) 4 g hal4Y)y
—DPi——b—(a—pB)st =0, 14 - 20
,, P 5 Pra Bt (14) = (20)
with the abbreviation Pressure Boundary Conditions. G,(y=0)=0, a(y=1)=0
BPskp; andp(y=1)=Py,
B P slpar dpr) (o) :
Pa Pt . P (Exs— &ds)(e*)\l“*y)fe*M('*)’))
For simplicity, the apparent mass densjly is assumed to be u= E(dna—dohy) 1+e2M
frequency independent gs,~0.66¢p; ([15]). With this set of (dihg—d3hy
equations the dynamic behavior of a poroviscoelastic continuum . R aal=Y) e ha(l+y)
is completely defined. (EN;—ady)(e” ™Y —e "30™Y))
- (21)
1+e 2\

3 Analytical Solution in One Dimension

A one-dimensional column of lengthas sketched in Fig. 2is | Po
considered. It is assumed that the sidewalls and the bottom areP= >

dl(é)\g,_ ads)(e_)\l(|—y)+e—}\l(|+y))

—2\ql
rigid, frictionless, and impermeable. Hence, the displacements E(diAz—d3hg) 1+e ™
normal to the surface are blocked and the column is otherwise free A ll—y)a gl +y)
to slide parallel to the wall. At the top, the stress and the _ dg(BEhj—ady)(e” Ve M)

pressurep are prescribed. Due to these restrictions only the dis- 1+ 2Md (22)

placementu, and the pore pressurp remain as degrees-of-

freedom. This one-dimensional example can be used to study th®isplacement Boundary Conditions. 0,(y=0)=U,, a(y
influence of poroelastic parameters on wave propagation, or it can) =0 andp(y=1)=0

be used for actual application of finite and also semi-infinite col-

umns by setting the layer depthlarge. Here, we are particular U EN2+ S2(&pe— e M@=y 4 oAy
interested in observing the interplay of the two compressional = 0 (Exs+sT(@pi—p)) )
waves, a fast and a slow wave. E(A\2-)\?) 1+e 2M
The governing set of differential Eq€L3) and(14) is reduced
to two scalar, coupled ordinary differential equations (E)\§+ 32(&pf_p))(ekg<2ly)+e%3y)}
L R R . - — (23)
EQy,y— (&= B)py—S*(p—Bpr)U,=0 (16) l+e 2
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Table 1 Material data of Berea sandstone, a soil, and a sediment

N N k N k N m*
N o N N ¢ k) o9 k[N i
|_III |_III élll Lllldlo TTT LIIIJ |‘N>J710
rock 8x1 6% 1 45 0.19 3.6x1 100 3.3x10° 1.9x10
soil 2.1x10° 9.8x 10’ 1884 0.48 1.1x10'° 1000 3.3x10° 3.55x10°°
sediment 3.7x10 2.2x10 1396 0.76 3.6x 10% 1000 2.3x10° 1x10°8

Us Ay (EN2+ $%(@p— p)) (& M2 Y — gy 4 Results in Frequency and Time Domain

p=< “onl With the analytical solution developed in Section 3, the influ-
E(\2-2\2) 1+e “Mt ) . - . ; .
3 M ence of different damping mechanisms is studied. Three very dif-
A _ _ _ ferent materials, ranked in descending order of stiffness, a rock
2, 208 A3(21-y) _ g Agy ! ’
_ ds(EAg+s(aps—p))(e ™ e ™) (24) (Berea sandstong[16]), a soil (coarse sand[17]), and a seabed

1+e 2\ sediment([18]), are chosen to cover a wide range of material
The corresponding stresses and fluxes are calculated with the dif@Perties. The material data are given in Table 1. We observe
dimensional form of the constitutive E¢7a) that the stiffness of the material, in terms of frame bulk modulus
~ and shear modulus, spans more than two orders of magnitude. The
a(s,y)=EQyy—ap (25)  value of bulk density decreases as porosity increases. The fluid
and the one-dimensional form of Darcy’s 1a2) bulk modulus for sediment is different because sea water was

referred in[18]. The bulk moduli of solid grain are about the
(26) sSame. We should point out that for the soil case, dense sand satu-
rated with silicon oil was used ifiL7]. In Table 1, however, the
With the solutions above, the frequency-dependent harmoriiéid was changed to water with other material coefficients con-
response of a one-dimensional poroviscoelastic column can $igtently converted. Finally, we observe that the permeability also
studied by takings=—iw. However, the time-dependent re-spans more than two orders of magnitude.
sponse due to an arbitrary excitatidft), is achieved by the  |n the constitutive Eq(7) the bulk modulusK, the shear modu-
convolution integral, e.g., for the displacements lus G, and the compression modulus of the solid itéelfare each
t chosen to be viscoelastic, modeled by a three-parameter model.
Uy(t'y):f L£7Hoy(s,y)Hny)f(t—7dr, (27)  For each of them, the values pfandq need to be given. How-

0 ever, to the authors’ best knowledge, no such data have been
where £71 is the inverse Laplace transform operator. Anotheteported in the literature. Therefore, the same set of data is some-
way to obtain solution of arbitrary transient input is to take th@hat arbitrarily chosen for the three materials. To compare the
advantage of the property of Laplace transform influence of viscoelasticity in different moduli on the dynamic

uy(t,y)=£’1{ﬁy(s,y)f(s)} (28) response, four different cases are considered:

L " Case 1: Only the bulk compression modukigs) is modeled
where f(s) is the Laplace transform of the boundary condition ) . 1 1
f(1). viscoelastic: p,=1[5], q=1.575] and pys=Pg= ks

We now have two possibilities to evaluate the response in time =g,=0[2].
domain. We can either multiply the impulse response functions ¢ ~ ) . )
(19—(24) by the input excitation in Laplace domaif(s), witha Case 2: Only the shear modul@(s) is modeled viscoelastic:
subsequent numerical inverse transformation as indicaté28jn =15t =1.9Y andp..=p.=d..=g,= 0l 17.
or we use the “Convolution Quadrature Method” proposed by Po=1: 4g=1.95] _ Ples™ Pie™ Gls™ [_S] _
Lubich [10] to directly tackle(27). The first choice, with all its Case 3: Only the compression modulus of the solid material

advantages and disadvantages, is the traditional appreaeh K.(s) is modeled viscoelastio, .= 1/ £ —191%
e.g.,[12] or[11]). But, in this case here, where the one function in (5) Prs= 151 Qs=195]

the convolution integral27) is available in Laplace domain and and Pk=Pg=Qk=Qg=0[%:|-

the other function in time domain, it is preferable to take th . . . ; e
Convolution Quadrature Method. This method approximates tg:ease 4. The purely poroelastic case without any viscoelasticity:

convolution integral27) numerically by a quadrature formula Pks= Aks= Pk= pg=C|k:qg:0[§]-
n Before solving the transient problems, the frequency response
uy(nAt)=2 o (ADF(KAD), n=0,1,...N, (29) of a column with IengtH_ =1mis fiArSt considered. In Fig. 3 the
k=0 absolute value of the displacemeit{w,y=1) at the top of the
whose weightsw, (At) are determined with the help of thecolumn are pIot_tgd versus frequeneyfor the three m_a_lterials. As
Laplace transformed impulse response functiépés,y) and a boundary _condltlon, a constant step pressure loagiriiout to-
function y(s) that defines the linear multistep method tal stress is assumed. In Fig. 3 we observe resonance peaks as
L1 —_— expgcted. Thg firgt resonance frequency is around 2000 Hz for the
E a (y(Re ))e‘""”’L. (30) sediment, which increases to about 5000 Hz for the rock. The
y At various curves correspond to different assumptions of viscoelas-
%ceiw, referred to as case 1 to 4 in the above. It is found that the

More details of the method and the definition of parameters can ) . . . .
found in Appendix A. In the following, this method is used tosedlment response is least affected by viscoelastic effect—there is

perform the time-dependent responses, choosing a backward Bsically no shiftin eigenfrequencies and only a slight damping in
ferentiation formula of order 2BDF 2) as the underlying multi- fesponse amplitude. This is in accordance with our model, be-
step method.

. B .
G(s,y)=- S_I)f(p,y+szpfuy)-

wn(At)— L

Journal of Applied Mechanics MARCH 2001, Vol. 68 / 195



3.0E-12 OE+00
e case 1 case 1 ---- case2
B -~ casel —-—-- case 3 case 4
3 —
S20-12 case 3 —2E-11- :
2 g \
g = A
£ e} \
8 1.0E-12 =1 i
2 2 ~E-11
& | Teesssses :
0.0E+00 ‘ ‘ ‘ | g
<
0 5000 10000 15000 20000 B, —6E-11—
5
frequency w*s =}
(a) Berea sandstone
-8E-11—
I [ I T 1
E case 1 0.000 0.001 0.002 0.003 0.004 0.005
= ----case2 3
3 L.OE-10 time t/s
(‘:E’ (a) Berea sandstone
o
§ 5.0E-11 ESS— OE+00
£ case ] ---- case2
B —-—-- case 3 case 4
0.0E+00— T T T T ]
0 2000 4000 6000 8000 1000 £ 2E-104
frequency w*s »
-1
(b) soil <
Q
§ —4E-10-]
8.0E-10 =
s case 1 %
=2 ---case2 =
3 6.0E-10
= —6E-10—
B
2 4.0E-10
§ T I f T 1
= 0.0 0.002 0.004 0.006 0.008 0.01
Z20E-104 0 U= .
time t/s
T T T T T T T T T ) .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 (b) soil

frequency w*s i .
Fig. 4 Displacements u, (t,y=/) at the top of the column ver-

(c) sediment .
sus time t
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effect. We notice that the wave speed is modified in both materi-
. . . . _als. Case 4, the case without viscoelasticity, has the slowest wave
cause the sediment bulk property is dominated by the fluid, whi eed, by observing the time it takes the wave to transverse the
is elastic. The viscoelastic solid hence contributes to only a S&&jumn. This is not surprising, because by setting the two param-
ondary influence. The soil response is also less influenced. Thefgrgy andq in (6) to zero, case 4 has the smallest modulus. In the
is a small shifting of eigenfrequencies, and a somewhat arggk qe|astic cases, the apparent modulus of the material is be-
damping than the sediment case. The largest effects are founqiRen 1. % for small time (or high frequency, andE for large
the rock material. Not only there exists larger damping, particCye (or low frequency, due to thep andq values used. Hence the
larly on the resonance peaks, but also significant shift of eigenfiga, e speed of the viscoelastic and the elastic cases should not be
quencies occurs. We further observe that for all materials, tB?rectIy compared. However, among the viscoelastic cases, we
largest damping results from the viscoelasticity of bulk compregz, compare and observe that different modulus has different ef-
sion modulus. For soil, the largest shift of eigenfrequencies resiz on the two materials. The fastest wave in the rock is associ-
from the viscoelastic effect df5, compared to rock wher®@ has  ated with the viscoelasticity of shear modulus. The fastest wave in
the most influence. This shows that the effect of each modulusgisi|, on the other hand, is observed to be associated with the solid
different in different materials. compression modulus. The oscillation amplitude is found to be the
_ For the frequency response of the other two boundary condimallest also in these two cases, respectively, for soil and rock.
tions, a stress and a displacement loading, the influence of Visrese are consistent with the observation in frequency domain.
coelasticity exhibits similar trend. Hence it is enough to show the \we further tested cases with an increased damping vaJue
results for just this boundary condition. _ which is observed to enhance the damping effect. But as men-

Now, the time-dependent behavior is considered. Due to thgned before, no measured damping values are available. It is not
relative insensitivity of sediment response to viscoelasticity, onpypssible to say whether these assumed damping values are realis-
results for the two other materials are presented. In Fig. 4 thg or not. Therefore, these results are not presented here.
displacementsi(t,y=1) at the top of the column, caused by a step e next investigate wave propagation in this one-dimensional
stress loadingr(t,y=1)=—H(t)N/m?, are depicted versus time. column with the aim of capturing the two compressional waves, a
In each of the curves, a different time-step size is used for thgst and a slow wave. These two waves have been identified for
Lubich method, due to different wave speeds of the materials. Rle poroelastic case as presented by Schanz and GBéngo
the Berea sandstondt=1x10"°s and for the soilAt=2 clearly observe these two waves, a semi-infinite column is used to
X 10" % s are used, withi =500 time steps. As with any numericaleliminate reflections at the ends that can confuse the arrival of the
method, too large a time-step size leads to worse results duetw@ different waves. An observation of pressure is made at 5 m
inadequate approximation of the time history of thdelow the top surface, where a step stress loading is applied.
displacements. Our experience in the poroelastic cageX) has indicated that

In Fig. 4, the rock displacements show an oscillation similar tithe second compressional wave dissipates rapidly. With the per-
that for an elastic material, whereas for the soil, the oscillation meability of these used materials, the second wave will not sur-
combined with a settlement, due to the well-known consolidatiorive with a detectable magnitude & m below surface. To en-
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1.0~ | erally cannot be avoided. It is, however, small enough to be tol-

' erated. With decreasing permeability, the first wave arrives at in-

0.8 M;j_;_’_;::,::ﬁ—m—,;_;‘;;""**\\_ creasingly larger amplitude, and the second wave at smaller
‘ amplitude. In the case of=3.55<10 °m*(N s), the curve is

flat after the arrival of the first wave, which means that the second

2
i
04 £=3.55x 10" ! wave arrives with an undetectable amplitude due to viscous damp-
;
i

0.6

----- x=1x10"° ing. These dynamic behaviors are similar to those in the poroelas-

pressure p(y,t)*m/N

--— g=1x107 tic cases without viscoelasticity, as discussed in more detgsl]in
0.2 . I ; :
- g=1x10" Once the general dynamic behavior is established, the influence
0.04 J of viscoelasticity in the individual modulus is studied in Fig. 6. As
’ in Fig. 5, the pressure(t,y=995m) due to a stress Heaviside
~02 | : | | step loading is plotted versus time. But here the cases 1 to 4
0.0 0.005 0.01 0.015 0.02 defined in the beginning of this section are examined. To enhance
. the observation of the second wave, the largest permeability case
time t/s . - P .
used in the preceding example=10“m"(N s), is used here.
Fig. 5 Pressure p(t,y=995m) versus time: wave propagation Similar to the investigation above, the viscoelasticity of different
for different values of & in an “infinite” soil column modulus has different effects on the two materials. First of all, we

observe that the wave velocities are modified, much more so for
the second wave than for the first wave. The arrivals of the first
hance the observation of the second wave, artificially largeaves are close to each other. Nevertheless, in both materials case
permeabilities, or different materials, must be used. For tHegives the slowest first wave. In rock, case 2 has the fastest first
present purpose, the permeabilities are arbitrarily increased. wave, and in soll, it is case 3. These are consistent with earlier
In Fig. 5 the pressuret® m below surface in an infinitely long observations. The second wave, on the other hand, is more com-
soil column, modeled b{=1000 m, caused by a stress Heavisidplicated. In most cases the second wave of the viscoelastic cases
boundary condition, is plotted versus time for different values dfavels faster than the nonviscoelastic one, case 4. However, in
the permeabilityx, ranging from 10° to 10 >m*(N s), andp, case 3, where only the solid grain modulus is modeled viscoelas-
=Ppgy=Pks=1.5(1/). Other material properties are referred tdic, the first wave becomes faster, but the second wave becomes
Table 1. slower than case 4. We also observe that there is significant am-
Let us first examine the case with highest permeability, plitude reduction of the first wave for the rock material when
=10"2m%(N s). We observe a step rise in pressure that indicat&&coelasticity is present, except for case 3, where the amplitude
the arrival of the first wave around 2.5 ms. The pressure stafp§reases. For the soil, there is little change in amplitude.
roughly constant until at 13 ms. At that time, the second wave
arrives and negates the positive pressure. Since there is no boynd .
ary reflection, the identity of the second wave is clearly estab- Conclusions
lished. We should point out that the small fluctuation around the In the presented work, Biot's theory of porous media is ex-
pressure front is an artifact of the numerical method, which getended to poroviscoelasticity by means of the elastic-viscoelastic

case 1
--- case2
1 —-—- case 3
case 4

pressure p(t,y)y*m/N

T T T T T I 1
0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

time t/s

(a) Berea sandstone

case 1
--- case2
—-— case 3
case 4

pressure p(t,y)*m/N

T
0.0 0.005 0.01

time t/s

(b) Soil

Fig. 6 Pressure p(t,y=995m) versus time: wave propagation for different damping cases
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correspondence principle. A physically more appealing model isThe functiony(z) is the quotient of the characteristic polyno-
implemented that separates the viscoelasticity to threeials of the underlying multistep method, e.g., for a BDF 2,
components—that due to the compression of solid frame, of soligz) =3/2—2z+ (1/2)z?. The used linear multistep method must
grain, and the shearing of solid frame. A three-parameter rhege A(«a)-stable and stable at infinit19]). Experience shows that
logical model is applied to each of them. The fluid is modeled ase BDF 2 is the best choic§21]). Therefore,t is used in all
viscous and Newtonian, as in the classical theory. Next, an amgdculations in this paper.

lytical solution of a one-dimensional column is derived in Laplace |f one assumes that the values ﬁfz) in (33) are computed
domain. Then, with the Convolution Quadrature Method the timgyith an error bounded by, then the choicd =N and RN= /e
dependent behavior is achieved. yields an error inw,, of sizeO(/€) ([10]). Several tests conducted

Three widely different materials, a rock, a soil, and a sedimerfy the authors lead to the conclusion that the parameter
are used in the analysis. The viscoelastic effect is found to b8;5-10 5 the pest choice for the kind of functions dealt with in

stronger in rock and soil, than in sediment. The rock is shown i« paper([13]). The assumptiol =N results inN? coefficients

be more influenced by the shear modulus whilst the soil is moﬂ?n(At) to be calculated. Due to the exponential function at the

affected by the compression modulus of the grains. In the erhP of formula(33) this can be done very fast using the technique
guency domain, shifting of resonance frequencies and damping ?fthe Fast Fourier TransformatidfFT).

resonance peaks are observed. In the time domain with a s?ep

stress loading, viscoelastic effect generally leads to an increase in

wave speed for both the fast and the slow waves, and a decrease in

amplitude, except for case 3 in rock. This shows the conclusiok&ferences

drawn here are not entirely general, and are material dependent1] Biot, M. A., 1941, “General Theory of Three-Dimensional Consolidation,” J.
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Appendix A

Convolution Quadrature Method. The “Convolution

Quadrature Method” developed by Lubich numerically approxi-

mates a convolution integral

t n
y(t)= Jof(t* r)g(r)dr—»y(nAt)=l; on-(At)g(KAL),

n=0,1,...N, (31)

Appl. Phys.,12, pp. 155-164.
[2] Biot, M. A., 1955, “Theory of Elasticity and Consolidation for a Porous An-
isotropic Solid,” J. Appl. Phys.26, pp. 182-185.
Biot, M. A., 1956, “Theory of Propagation of Elastic Waves in a Fluid-
Saturated Porous Solid. |. Low-Frequency Range, Il. Higher Frequency
Range,” J. Acoust. Soc. Am28, No. 2, pp. 168-191.

[4] Detournay, E., and Cheng, A. H.-D., 199undamentals of Poroelasticity
Vol. Il (Comprehensive Rock Engineering: Principles, Practice & Projects
Pergamon Press, Tarrytown, NY, Chapter 5, pp. 113-171.

[5] Biot, M. A., 1956, “Theory of Deformation of a Porous Viscoelastic Aniso-
tropic Solid,” J. Appl. Phys.27, No. 5, pp. 459-467.

[6] Wilson, R. K., and Aifantis, E. C., 1982, “On the Theory of Consolidation
With Double Porosity,” Int. J. Eng. Sci20, pp. 1009—1035.

[7] Vgenopoulou, I., and Beskos, D. E., 1992, “Dynamic Behavior of Saturated
Poroviscoelastic Media,” Acta Mech95, pp. 185—-195.

[8] Abousleiman, Y., Cheng, A. H.-D., Jiang, C., and Roegiers, J.-C., 1996, “Po-
roviscoelastic Analysis of Borehole and Cylinder Problems,” Acta Mech.,
109 No. 1-4, pp. 199-219.

[9] Schanz, M., and Cheng, A. H.-D., 2000, “Transient Wave Propagation in a
One-Dimensional Poroelastic Column,” Acta Mech45 No. 1-4, pp. 1-8.

[10] Lubich, C., 1988, “Convolution Quadrature and Discretized Operational Cal-

by a quadrature rule whose weights are determined by the Laplace_culus. I.,” Numer. Math. 52, pp. 129-145.

transformed functionf and a linear multistep method. This
method was originally published ir10] and[19]. Application to
the boundary element method may be founi2@]. Here, a brief
overview of the method is given.

In formula (31) the timet is divided inN equal stepd\t. The
weightsw,(At) are the coefficients of the power series

@)
At

f =2 on(A)Z",

n=0

(32

with the complex variable. The coefficients of a power series are

1] Narayanan, G. V., and Beskos, D. E., 1982, “Numerical Operational Methods
for Time-Dependent Linear Problems,” Int. J. Numer. Methods Eh8,. pp.
1829-1854.

[12] Cheng, A. H.-D., Sidauruk, P., and Abousleiman, Y., 1994, “Approximate
Inversion of the Laplace Transform,” MathematicadJ.No. 2, pp. 76—82.

[13] Schanz, M., and Antes, H., 1997, “Application of ‘Operational Quadrature
Methods’ in Time Domain Boundary Element Methods,” Meccani3,No.

3, pp. 179-186.

[14] Christensen, R. M., 197ITheory of ViscoelasticityAcademic Press, New
York.

[15] Bonnet, G., and Auriault, J.-L., 1985, “Dynamics of Saturated and Deform-
able Porous Media: Homogenization Theory and Determination of the Solid-
Liquid Coupling Coefficients,” N. Boccara and M. Daoud, eddhysics of
Finely Divided Matter Springer-Verlag, Berlin, pp. 306—316.

usually calculated with Cauchy’s integral formula. After a polar[16] Cheng, A. H.-D., Badmus, T., and Beskos, D. E., 1991, “Integral Equations

coordinate transformation, this integral is approximated by a trap-

ezoidal rule withL equal steps 2/L. This leads to

_ 1 i Y(Z)) -n—-1
—ﬁfm_Rf( At VA dz

El f ,y(Reil 2miL)
=0 At

wp(At)

an

)efinl 2‘n-/L, (33)

whereTR is the radius of a circle in the domain of analyticity of ;1) schanz, M., 1999

f(2).
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W. Kliem This paper deals with stability problems of linear gyroscopic systems-Bx+Kx =0
with finite or infinite degrees-of-freedom, where the system matrices or operators depend
smoothly on several real parameters. Explicit formulas for the behavior of eigenvalues
under a change of parameters are obtained. It is shown that the bifurcation (splitting) of
double eigenvalues is closely related to the stability, flutter, and divergence boundaries in
the parameter space. Normal vectors to these boundaries are derived using only infor-
mation at a boundary point: eigenvalues, eigenvectors, and generalized eigenvectors, as
well as first derivatives of the system matrices (or operators) with respect to parameters.
These results provide simple and constructive stability and instability criteria. The pre-
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1 Introduction showed its validity. In a recent paper, Parke8] deals with con-
iguous gyroscopic systenisotorg with the angular velocity as

The theory of gyroscopic systems has a history which is moF - > i
than 100 years old. One of the first investigations in this field w. Sarameter. When studying stability he concentrates on a perturba

. e lysis in the vicinity of the zero eigenval(éivergence
carried out by Thomson and Tdii]. The possibility of gyro- ‘on ana . . - .
scopic stabilization of unstable conservative systems has to %oundary. To avoid nondifferentiability of the eigenvalue he

taken into account in the dynamics of all kinds of rotating bodié ?roduc,;(.esbla f%rmulatlontr?f the sydstemdln term;s)x&f (l‘?'h'iﬂ IS
such as elastic shafts, satellites, spaceships, etc. Nonrotating [fferentiable. However, this procedure does not work in the case

tems like fluid conveying pipes can also be influenced by gyr& eigenvalues near the flutter boundary. Note that most of the
scopic forces. cited papers deal with one-parameter problems. _
Here we restrict ourselves to mentioning only a few of the Our paper is organized as follows. After a general formulation

numerous books and papers on this subject: HagefRJrrHu- of the problem withseveral parametersve derive perturbation
seyin et al[3], Walker[4], Barkwell and LancastdE], Seyranian formul_as_for simple and_ semi-simple elgenvalues._ Then we st_udy
[6], Veselic[7], Seyranian et al[8], Lancaster and Zizlef9], & semi-simple double eigenvalue, and a double eigenvalue with a
Kliem and Seyraniar10], and Mailybaev and Seyranidi1]. smgle_elgenvector in (_jetall. These cases are mainly concerned
One will find further references in these articles, as well asﬂ'th eigenvalue behavior near tistability-flutter boundary Af-

concerning older literature—in books by Mar [12], Huseyin te_rwards we concentrate on the eige_nvalue locus neatabdity-
[13], and Merkin[14]. divergence boundarydouble zero eigenvalile The degenerate

The mathematical background of the present work is related tgse explaining the criterion by H(ynlv et @22] is investigated
the classical papers on perturbation theory for eigenvalues of cgf-w_‘?”- In all caseexplicit expansiongor eigenvalues near the
erators by Vishik and LyusternikL5] and Lidskii [16]. A com- ability boundaries are obtal_ned and ar_lalyzed. Finally we illus-
prehensive review of this theory with some extensions has belfte the developed results with mechanical examples.
given by Moro et al[17]. The results of{15] were applied to
vibrational systems and extended to multiple parameters by Sgy- Eigenvalue Problem for a Gyroscopic System

ranian[18]. The equation of motion for a linear gyroscopic system is
Concerning the question of behavior of eigenvalues under quati : ! 9y pic sy !
change of a single parameter, Renshaw and Ni@éformulated MX+GX+Kx=0, 1)

a conjecture on the stability of gyroscopic systems near the zer?I . . . .
eigenvalue (divergence boundaly Lancaster and Klien{20] WhereM, G, andK are linear differential operators in some do-
showed by two counterexamples that this conjecture is not genf2in P if we are modeling a continuum, or re@lx m matrices in

ally true. Rensha21] (for the special case of:22 systems with the case _of a discrete system. Dots mean dlff_erentlatlon with re-
zero eigenvalue and Hryniv et al. [22] reformulated the spect to time of the vectocof generalized coordinatdsr deflec-

Renshaw-Mote conjecture with an additional condition anfP? function. The system operators or matrices represent time-
independent mass, gyroscopic, and potential forces, respectively.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Vr\]/e Irl],]tmduce th%lnnﬂgrOdUCtlgwévv) fplia\;v.d P l?nd ag;u_me
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLiep  that the operatorbl andK are self-adjoint an@ Is skew-adjoint.
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, JanThis means that Nlv,w)=(v,Mw), (Kv,w)=(v,Kw), and
1, 2000; final revision, June 25, 2000. Associate Editor: N. C. Perkins. Discussion 6Gv,w) = — (v,Gw) for all admissible functions andw satisfy-

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departnigit the boundary conditions. In the case of matriddsandK are
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and@ y ’ g

; T_ T_ ; ; T
will be accepted until four months after final publication of the paper itself in th&ymmetric, _M =M, K - K and G is _SI_(eW'Sym_memCrG
ASME JOURNAL OF APPLIED MECHANICS. =—G. Besides we considéavl to be positive definite, Nlu,u)
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>0. It is assumed that the system operators or matrices smootfgy= 1, ands is a small positive number. Since the matrices of the
depend on a vector of real parametpes (p1,Pz. - - - Pn) - gyroscopic systentl) depend smoothly on the vector of param-
For the sake of simplicity in the following we drop to mentionetersp, we obtain

every time both the operator and the matrix possibility, since the,, _ 2 _ 2
theory is essentially the same. Therefore we will give an outline O?M =MoteMiteMat ..., G=GoteGiteGot . '('1’0)
the theory in matrix formulation. Examples will be given for con- K=Ko+eK;+%Ko+ . ..
tinua as well as for discrete systems.
Consider the eigenvalue problem correspondinéfljo where
(M +AG+K)u=0, ) Mo=M(po), Go=G(po), Ko=K(po),
where\ is an eigenvalue, anda corresponding eigenvector. The ! 5 G
eigenvalues\ are determined from the characteristic equation Mlzgl (9_pjej , Gl:]z::l ije,— ,
11
de(A\>’M +AG+K)=0. 3) K Ly (11)
It is well known ([13,24)), that if \ is an eigenval then Ki=2, =—¢j, My=5 ;e
s well known ([13,24)), that if X is an eigenvalue of2), the 1 Z:lapj i 272 £, apap Ik

—\, A and—\ are also eigenvalugs bar denotes complex con-
jugate. This means symmetry of the eigenvalues with respect with respective expressions f&,, K,, etc.

the imaginary and real axis and is also called Hamiltonian sym-Due to the variation of the vectqn, the eigenvalué. and cor-
metry according to the fact that gyroscopic systems are Hamiesponding eigenvectartake increments which can be expressed
tonian. Then it follows that the stability of the gyroscopic systeras series in integer or fractional powers gfdepending on the
can only be attained when all eigenvalues under a change of teldysh chain(see Gohberg et al25]).

parameters reach the imaginary axis. If all the roots of(Bgare
purely imaginary and simple\;=iw;j, then the general solution
of Eq. (1) has the form

Simple Eigenvalue. We assume that g¢t=p, the eigenvalue
No=Iiwo#0 is a simple root of the characteristic E§) with the
eigenvectoru,. According to the perturbation theory of non-

m _ _ selfadjoint operatorg[15,16]), in this case the eigenvalues and
x:E (cju;e’ ‘”J‘+me"‘”ﬁ) (4) eigenvectors can be expanded in integer power series of
i=1
. ) . i )\:ia)o+8)\l+82)\2+ ey U:U0+8W1+82W2+ e
implying the stability of the system. I¥) c; are arbitrary com- (12)
plex constants. With a change of the paramefar,, . .. .pn, ) )
simple purely imaginary eigenvalues move along the imaginary FOF the first term, we find ([18])
axis. They cannot leave this axis due to the Hamiltonian symme- (L1Ug,Ug)
try of the eigenvalues. This means that the stability of the gyro- Np=— (Golig Ug) + 2xg(Matg Ug) (13)
scopic system can only be lost when some simple eigenvalues 0-0:~0 Ao o0 "o
meet on the imaginary axi®ecome multiplg where we used the notation
For the sake of convenience we introduce the inner product of n n
i m M JdG oK
vectorsa andb in the complex spac€™ by |—1:E _ejzz RGNS WAL PY
m =1dpp =\ AR ap;  Ip;
(ab)=b*a=2, ab;. (5) —AZM -+ hgGy+ K (14)

. Formula(13) can be transformed to a more appropriate form if
A star after a symbol means the transposed and complex conju- . ;
gate quantity. We multiply the numerator and the denominator(@B) by A

Along with (2) we consider the adjoint eigenvalue problem:i(”0 and use the equality

with eigenvectow A5(MoUg, Ug) +Xo(Golg, o) + (Koo, Ug) =0 (15)
(M2M+AG+K)*v=0. (6) which follows from(2). Then we get
If we introduce the notation N —iw3(M1Ug,Ug) — w3(G1Ug,Ug) +iwo( KU, Ug)
L=A2M+AG+K @) ' @§(MoUg,Ug) + (Koo, Ug)
(16)
then we have . .
B - o - Due to symmetry properties of the matricels G, andK and
L*=A2MT+AGT+K =AM —\G+K. (8) EQ.(11) we haveM]=M,, K]=K;, G]=—G;. This means

. . . . . . that the quantities M 1ug,ug) and Kjug,up) are real, and the
the that if the_elgenvz_il_ue 1S pure_ly |Lnag|r_1a)\y,=|w, thgn the quantity (Gug,Ug) is purely imaginary. Then fronil6) we de-
matrix operatoiL is He_rmltlan, |.e.,L—_IT . Thls follows directly  4,ce that\, is purely imaginary(or zerg in accordance with the
from (7) and(8). For this case the adjoint eigenvalue proble®)s apove conclusion that purely imaginary simple eigenvalues can
and (6) coincide, such that the eigenvectors of the two problemgyt leave the imaginary axis. They are differentiable with respect

can be chosen to coincide as well, to parameters.
v=u. (9 Multiple Eigenvalue: Semi-Simple Case. We assume that at
) ) p=po the eigenvalue\,=iw, with algebraic multiplicityr pos-
3 Perturbation of Eigenvalues sesses a full number of linear independent eigenvectors
We assume that at a poipt=p, in the parameter spad®® the Uz:Uz, - - - Ur . If the other eigenvalues are purely imaginary and

gyroscopic system possesses a purely imaginary eigenwaue SImMPIe, then the solution dfl) at p=p, takes the form

=iwg, simple or multiple. Our task is to study the behavior of r m

eigenvalues in the vicinity of the initial poirg,. x=2, (cueettcue i+ > (cue“t+cue et
For this purpose we consider a parameter variaiioap, = I E= 1

+ee, wheree=(e,, ... ,e,) is a direction vector of unit norm a7)
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with c; being arbitrary complex constants. Expressibf) shows For convenience of the analysis we introduce the following
that the motion of the gyroscopic systdf) at p=p, is stable.  notation:
To study the behavior of eigenvalues near the pagtwe B B B
consider a parameter variatiqre py+ee. According to the re- (Laup,up)=ag, (LyUz,Up)=az, (LiUy,Uz)=2ayy, 03
sults of the perturbation theo(ﬁlS,lG_), in the case under study (iL/oNuy up)=by, (ioLIoNUy,Uy)=bs. (23)
the eigenvalues must be expanded into integer powess of
The quantitiesa; ,a,,b;,b, are real numbers whila;, is com-

N=iwgtehyte® ot ... . (18)  plex. With this notation we can write E¢R0) in the form
The first-order coefficients, are determined by the E¢.18]) a;—i\.b; a,
e — . =0 24
oL ; { g a;—iNb, 24)
def (Lquj, U ) +Nq| - Uj,u| [=0, j,k=1.2,...1 (19)

I\ and we find
where for the eigenvectors of the adjoint problem we substituted s R — 7 2
v;=u;, j=12,...r, and the notatiof., from (14) is used. The A= i(@yby+azby) =V~ (a1b, — aghy)*~ 4bibylayy )
validity of expansion(18) is ensured by the assumption that the 2b;b,
matrix [ (L,u; ,u)] is nonsingularand the roots\; of equation (25)

(19) are alldistinct, see[16,17]. An example violating this condi- if we assumeb,b,#0.
tion was reported[20]) in the one-parameter case with an expan- | et us first consider the case, whbp andb, have the same
sion A=xig¥+ ... different from (18). With the above as- sign,b,b,>0, i.e., the matrif (idL/au; ,u,)] is definite. Then it
sumption we rule out such nongeneric cases. It should also feflows immediately that the solution®5) yield stable splitting
mentioned that without the extra assumption of distinct rogts of the double eigenvalui,=iw, along the imaginary axis for
of (19) the expansioitl8) has to be changed into the weaker formarbitrary variatione in the parameter space. This case was dealt
. with in the previous subsection.

A=iwo+eh;+0(e). The casé;b,<0 leads to an unstable bifurcation of the double
Equation(19) can also be written as eigenvalue\ y=iwy into two eigenvalues with nonzero real parts,

if the discriminant of the quadratic EqR4) is positive, i.e., if

=0, j.k=1,...r. (20 —4b;b,la;,?>(ah,—asb;)2. (26)

Now we introduce real vector§,, f, and f;e R" with the
coordinates

~dL

o Uj Uk
The matriceg (L,u;,uy)] and[(idL/d\u;,u,) ] are Hermitian,

since the operators; andidL/d\ are Hermitian. If one of the

de{(Lluj JU) —iNg

two matrices is positive definite, then there exists a basis fi+ifh=2y=b;b,(sL/apjuy,uy),
ui,uj,...,u", in which both matrices are diagonal and real. _ (27)
This means that in this basis we have fJ3=bz(&L/apjul,ul)fbl(aL/ﬁpjuz,uz).
(Luk ,u)—inPaaL/onud ,u¥) Using (14), (23), and(27) we rewrite(26) as
=0,... (Lyu* ,u) =Ny aL/anu® ,ur)=0. (21) (f1.€)%+(f2,0)°>(f5.€)?, (28)

If a Hermitian operatoH is positive definite, then the so-calledWhere the inner produdt,-) of vectors inR" is defined in the

[ j,k= [ iti ini i | way.
Gram matrix{ (Hu; ,u)1,j,k=1, . .. r is positive definite for lin- USU2 _
ear independent] vekctorul, ...,u, ([26]). In the case when Npte that thg ygctors.l, f,, andf; depend only on the infor-
idL/on is definite, we can solvé21) and get purely imaginary mation at the initial point, and do not depend on the vector of
values\ ), ... A all different from zero sincd(Lyu;,u)] Haion®

. . - . If e satisfies inequality28), it belongs to the instability domain,
was assumed nonsingular. This means splitibgurcation of )+ it the lef-hand side of28) is less than the right-hand side,

the semi-simple eigenvalug, along the imaginary axis. Thus, Wethene belongs to the stability domain. The boundary surface be-

obtain a simple sufficient criterion for stability: tween the stability and instability domains is determined by the

If the operator BL/d\ is positive (or negative) definite, then€duality

th_e multiple eigenvalue ,=iw, split.s intq r purely imaginary (1,6)2+(f,,€)2=(f3,€)2. (29)
eigenvalues for any vector of variation e in the parameter space,
ensuring stability of the gyroscopic system (1) near the initialhis is a conical surface in the parameter spBEedividing the
point p, (except for directions e for which some roots are stability and instability domains. But on this surface expansions
equal to each other). (18) are not guaranteed since on the surface the two noptsf
Eq. (25) are equal.

However, in the general case when the matdk/J\ is not Consider the two-dimensional parameter spaeg p;,p,) and
definite, the stability of the gyroscopic system can be lost whenvector of variatiore= (cosa,sin«), see Fig. 1. Then we get for
we consider small changes of parameters. We will study suchtie stability domain the inequality

ossibility thoroughly for the case of a double eigenvalue
Fi2). / aw d ( (f1 cosa+ f2sina)?+ (f1 cosa+f3 sina)?

Double Eigenvalue: Semi-Simple Case.We consider a S(fécoswrf%sina)z. (30)
double eigenvalue\p=iwy#0 with two linearly independent
eigenvectorsl; andu,. For the first-order coefficient; we have
the quadratic E¢(20). We assume that the eigenvectors satisfy the A=(fH2+(f2)2— (D)%, B=fi2+f3f3—fif3,
orthogonality condition (31)

C=(f3)?+(f3)?—(f3)?, D=B?-AC,
(idL/o\uy,u,p)=0. (22) (™ (1) =(1)

Introducing the coefficients

inequality (30) yields the quadratic inequali
This diagonalization can always be done since the matrllx g Y0y q quallty

[(igL/anu;,uy)] is Hermitian. Ctarf(a)+ 2B tan( ) + A<O. (32)
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P,

P,

Fig. 1 Stability (S) and flutter (F) domains in two-dimensional
parameter space in the vicinity of the initial point Po

For example, ifC>0, D>0, then the stability domain is given
by

(-B—D)/C<tana<(—B+D)/C. (33)
The stability domain{S) in the vicinity of the initial pointp, for

AN=Ngt e +ten,+ ..., u=ugtewitew,t ...

(38)
For the first coefficienh ; we find ([18])
L,up,u
)\i: _ ( 140 0) , (39)
(dL/dNwg,Ug) + (Mgug,Ug)

where notation(14) has been used. For the eigenvalue of the
adjoint problem we have substituteg=u,, see(9). It is easy to
prove that the right-hand side ¢89) is a real number. First we
estimate the term

(&L/&)\WO ,Uo) = ([Go+ 2)\0M O]WO ,Uo)

=(Wo,[Go+ 2iwoMo]* Ug)

=(Wo,[=Go—2XoMq]Jug) = (Wp, — L/ I\ Ug)
(40)
The chain of equalitie$40) holds due ta(35) and the Hermitian
propertyL* =L.

Note that the validity and convergence of expansi88) is

ensured by assumption that the right-hand sid€6f is not zero,
which means I(;ug,uUp) # 0, see[15-16.

For the one-parameter case this condition also apped22jn
as sufficient for instability in a one-side vicinity pf. With (40)

=(Wo,Lwg)=(Lwg,Wp).

Caseq1) and(3) is shown qualitatively in Fig. 1. These and othe@nd(14) equality (39) becomes

possibilities for the stability domain are depicted in Table 1.

Double Eigenvalue With a Single Eigenvector. This case is

also described in the literature as non-semisimple eigenvalues, or

strong interaction. We assume thatmt p, the eigenvalue\,
=iwg is a double root of the characteristic Eg), corresponding
to a Keldysh chain of length §25]):

Lug=0, (34)
Lwo=— (aL/dN)ug. (35)

It means that there exists only one eigenvectpr andwy is a
generalizedor associatedeigenvector; the partial derivative bf
is taken af\y. A solution of(35) exists only if the right-hand side

n

21 (8L/&pju0,u0)ej
2 =

A=

— . 41
(Lwg,Wg)+(Moug,Ug) (“1)
The operatorg, JL/dp;, andM, are Hermitian. Hence the right-

hand side of41) is a real number.
For convenience we introduce a real vectoe R" with the
coordinates

ho= (aL1dp;ug,Uo)

7 (Lwo,Wo) + (Mg, Up) ° (42)

of (35) is orthogonal to the solution of the adjoint eigenvalue The vectothdepends only on the information at the initial point

problem(6), which isvy,=ug according to(9). Thus we have
(&L/a}\UO,Uo):O.

Assuming that the other eigenvalukg are purely imaginary
and simple, a solution afl) at p=p, takes the form([25]):

X=CqUqe 0!+ T Upe ™ “ot+ c,p(Ugt + W) e ot
m
+ (Ut +Wo)e '@t 4 D (cu it +cue ).  (37)
2(Ugt +Wo A ju; iYj '
j=3

po and does not depend on the vector of variagoifhen(41) is
rewritten as

A=(h.e). (43)
Eventually, from(38) we end up with
N=iwg*\e(h,e)+0(e). (44)

Equation (44) clearly shows nondifferentiability of a double
eigenvalue with respect to parameters. For all variatosatisfy-
ing the inequalityh,e)>0 the double eigenvalue bifurcates into

Herec;,j=1,... m are arbitrary complex constants. The soluywo simple, one of them having a positive real part. If we assume
tion (37) is unstable(onset of instability due to the presence of the remaining eigenvalues simple and purely imaginary this
the secular ternte' ", means onset of flutters(y# 0) or divergence ¢,=0) instability

With the intention to study the behavior of eigenvalues near thg the gyroscopic system. And if we take variaticmsatisfying
point p, we consider a variatiop=py+ee. According to the the inequality (h,e)<0, the double eigenvalue splits into two
perturbation theory{15,16)) in this particular case the expansionsgurely imaginary eigenvalues which means stability of the system.
of eigenvalues and eigenvectors contain fractional powees of This shows that the poinp, belongs to the boundary surface
between the stability and instability domains in the parameter
space, and the vectdris the normal to the boundary and lies in
the instability domain, see Fig. 2.

Note that expansion$38) and (44) become invalid if)\i
=(h,e)=0, i.e., when the vector of variatioa belongs to the
tangent plane of the stability boundary.

Table 1 The stability domain for different combinations of
parameters

1) C>0,D>0 (-B—D)/C<tana<(-B+D)/C

gg gzg B;g ';?,'Zﬁ?iﬂ%,"é"m Double Zero Eigenvalue. (1) First we consider a double
' tana=(—B—yD)/C semi-simple eigenvaluk,=0 with two real eigenvectors; and

(4) C<0,D<0 No instability domain U,. Using(11) and(14) in (19) and taking there&. ;=0 we obtain

the quadratic equation for the first term coefficiant
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12 Example 1. Consider a simple model of a massless elastic
shaft rotating with a constant angular velocity and carrying a disk

n with mass. The shaft is subjected to a constant axial compression
force. In nondimensional variables with respect to a rotating ref-

e erence system this rotor is described by a gyroscopic sy&tgm
with the system matrices, s¢&3|

1 0

M =
0 1

, G=2w

0 -1
1 0]

P
0

[ K=

2
Ci—7—w 0
' . (55)

0 Co— 17— w?
Fig. 2 Normal vector h and vector of variation e at a point of

the stability boundary Herec, andc, are the elastic rigidities of the shaft in two prin-

cipal directions,n represents the compression force, ani the
angular velocity of the shaft rotation. A stability analysis of this
system depending on four parameteis c,, 7 and w was pre-
(Kyug,uy) (Kquy,Uz) +N1(Gouy,Up) sented in8].
€ (KqUsp,Uy)+ N1 (Goly,Uy) (KyUs,Usy) =0. Now we want to study stability of the systeft), (55 with
(45) respect to the parametecg and c,, taking fixed values of the
) . ) other two parameterg=3 andw=2.
The terms Gou;,u;), j=1,2 disappear because the eigenvectors consider the pointdy ,¢,) = (7,7). According to(2), (3) at this

uy andu, are real andy=—G,. Besides, we have point we have a double eigenvalag=0 with two linear inde-
(Kl )= (K3 Ug), (Golly Uy) = —(Gouiy ) (4g)  PEndent elgenvectors ;
due to the symmetry properties &f, and G,. Therefore(45) u;=(a,0)', Uu,=(0,8)", a#0, B#O0. (56)

results in This is the semi-simple case. Using the normality conditié®)

2 2 _ 2_ and (55), we find 2waB=1. As w=2 we can takea=1, B8
M(Goulvuz) +(K1U1,U1)(K1U2,U2) (K1U1,U2) 0. =1/4. According tO(lS), (50) we have

(47)
We introduce real vectors;, k,, andk,, with the coordinates A==*e(kip,€)"— (ky,e)(kp,€) +O(s?) (57)
ki =(aK/opiuy.up),  Kb=(IK/dp:u,,u,), whereeis a vector in the, , c,-plane. Calculating the vectoks,
1 (. Piuz.Un),  ke=( Pjuz,Uiz) (48)  k,, ky, with the use of(48), (55), and(56) we obtain
] = ) i=
= (KIopL ), T= L =107, kp=(0,167, kp=(00".  (58)
and assume the normality condition Following (51), (57), and(58) we find that the stability domain
(Gouy,uy)=1. (49) in the vicinity of the point ¢,,c,)=(7,7) is given by the inequal-
. N . it
Then using(11) and substitutind48) and (49) into (47) we get v
> (kq,e)(ky,e)>0. (59)
M= = V(kip,€)7— (ki ,e)(kp,€). (50) s
. o i ) If we take both possibilitiegk, ,e)>0, (k,,e)>0 and(k,,e)
If the vector of variatiore satisfies the inequality <0, (k,,e)<0 we get the result that the vect®belonging to the
(k12,8)>—(ky,e)(k,,€)<0 (51)
the system is stable, andefsatisfies(51) with the opposite sign
>, the gyroscopic system becomes unstaflvergenceg The 9
equality sign in(51) corresponds to the boundary between stabil- c, D d
ity and divergence domains. 3- S
(2) Consider now the case of a double eigenvalye 0 with a
single eigenvector, i.e., a Keldysh chain of length 2. Substituting ;
(7) into (34) and (35) with A;=0 we obtain
KOUO:Oy K()WO: - GolJo. (52) 6
Sinceu is a real vector an@}=— G, the orthogonality condi-
tion (36) is always satisfied,Boug,Uo) =0. Then Eqgs(39) and 5] S D
(41) imply
4]
(K1Ug,Uo)
N=— 53
b (Kowo,Wo) +(MgUo, Uo) 3) 3] p
and the coordinates of the normal veckoto the stability bound-
ary according tq42) take the form 21 F
(9K/ap;jug,ug) .
hi=— , j=1,...n. 54 Ly
=7 (KoWo Wo) + (Mol Ug) >4 c
Now bifurcation of eigenvalues is given i§¢4) with wy=0. The :

stability condition is(h,e)<0, and the instability(divergence

condition is(h,e>>0._ Itis easy to see that the stability conditiongig. 3 stability and instability domains in the two-dimensional
applied to 2<2 matrices with one parameter agrees with that Qfarameter space of the rotating shaft with »=2 and #=3. S
[21]. denotes stability, D-divergence, and F-flutter.
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stability domain(S) lies in the first and third quadrants, see Fig. 3, N2U+ 2N VU F Uyt (12— ) Uy =0,
and fore in the two other quadrants we have divergence instabil- (68)
ity (D). U(0)=ux(0)=u(1)=ux(1)=0.

For comparing with the one-parameter case((afl,22) we The corresponding differential operators(ib, (2), and(7) are
choosec; =p andc,=14—p which corresponds to lind in Fig. P ¢ P ®, ), @

3. Then the stability condition presented in these papers is not M=1, G=2vdldx, K=ad*ax*+(v?—«?)d%lox?,

o . . - L (69)
satisfied since the matrix(L,u; ,u)]=[3 _9] is indefinite, and .2 4 oudL 2 2\ 2402
nothing can be said about staﬁility or instability. But according to L =220 00/ ox+ 971 9+ (v7 = 45) 37l o
our theory this case means divergence instability. and depend on the two parameterand .

Another situation concerns point€4(,c,,7,w) in the four- Investigating divergence instability we consider the double ei-
parameter space satisfying the equation genvaluex,=0 in Eq.(68) and obtain the critical speeds with

(C1—Cy) 2+ Bw?(Cy+ Cy—27) =0 (60) corresponding eigenfunctiong,, see[23]
v2=k?+n?m?, up=sinnmx, n=12,.... (70)

which, according td8], is a boundary between stability and flut-
ter. The eigenvalues on this boundary are double and equal toThe divergence boundaries are shown in Fig. 4.
To find the generalized eigenfunctian, we write the eigen-

— 2
N=xiy(e+ 62—+ 0, (61)  value problem(52) in the form
The eigenvalue\g=i+/(cy+C,) /12— n+ w?® possesses a single T*Wo [ 9x*+ 2202 | 9X2= — 2w U | 9X,
eigenvectoiu, and, according t@35), a generalizedassociated (71)
eigenvectomw, given by Wo(0)=(d*Wo/dx?)x—0=0, Wq(1)=(*Wo/dx?)x_1=0.
Up=(i2w\2(C1+Cr—27+2w?), Ci—Cr—4wd)T, Using (70) leads to the general solution
Wo=(0, (—3¢;—Cot+47)/\o)T. (62) Wo=(cnm/2)x sinnmx—c+c(1+(—1)"*Y)x+c cosnmx
Then vector from (42) has the coordinates +ysinnmx, n=12,... (72)

h,=—4w?(c,+Cr+2w?—27)/d, h,=8w?(c;— n—w?)/d, Wherec= 2v./(nm)3 and y is an arbitrary constant.
According to (44), (54) we can find the vectoh describing

hs=—4w?(c;—c,— 4w?)/d, splitting of the double eigenvalug,=0 near the divergence
hy= w(GCif20%*40102*87701+877C2)/d, boundary. The operators 54) become
, IKldk=—2k?19x?, IKlJv=2v.9%1Ix>. (73)
d=—3ci+c5+2C,Co+47C;—4nCy+ 4% (Cr—Cr+4w?). _ _ )
(63) Computing the inner products with the use @0), (72) we

obtain
If we choose a constant angular velocib= 2, the stability

boundary (60) becomes the paraboloidc{—c,)?+32(c;+c¢, __
—27)=0. Consider, e.g., the vicinity of the point,c,,7) (9KI9KUg, Ug) = =2k 0
=(3,3,3) on the paraboloid. For this point the vedidrom (42)

has according to(63) the coordinates H;,h,,hg)T=(—1/2,

— 1/2,1)T, his the normal to the paraboloid and lies in the area of
flutter instability. If we choosep=3 constant as well(60) be-
comes a parabola in the{,c,) parameter space with the normal (Kwg,Wg)=—(Gug,Wq)
vector (h;,h,)T=(—1/2,—1/2)" at the pointp=(c,,c,)=(3,3). 22 5 in+t 44
Choosing the vectoe= (cosa;sina)’, expressiong43) and (44) =~ ve(@n*7 - 161+ (- D)™ )/ (2n" ),
result in (MUg,Ug)=1/2. (74)

\2=(h,e)=—(cosa+sina)/2= —sin(a+ 7/4)IV2,

1
#Uql ax2ugdx= kn?7?,

1
(6K /dvug,ug) :2ch #Uql IxPugdx=— ven?m2,
0

Finally, we find the vectoh which is normal to the divergence

(64) boundaries as

N=i(c;+cy+2)/2%i e sin(a+ 7/4)IVZ+O(e).

In the vicinity of the point ¢,,c,)=(3,3) we get therefore
stability for all chosen vectors satisfying

(h,e)<0& — m/4<a<3m/4 (65) 4]
and flutter instability for .
(h,e)>0e3n/4<a<Txl4 (66) ]

in agreement with the stability map 8], see Fig. 3.

For a= — w/4 anda=3m/4 we gete= =+ (v2/2,—v2/2) which
is tangential to the stability boundary, akg is zero. In this case s.s
only an investigation of higher order coefficients,\3, ... in

expansion(38) can give an answer. 5

Example 2. Consider an axially moving beam modeling banc**]
saws, belts, magnetic tapes, etc., [&&23. The nondimensional 4]
equation of motion for free response is

354
ytt+ 2Vyxl+yxxxx+ ( sz Kz)yxx: 0 (67) . . ‘ ‘ ‘ i i
where v and « represent transport speed and axial tension. We 0 ! 2 ? 4 > ¢ 7
assume simply supported boundary conditions. Fig. 4 Stability (S) and divergence (D) domains of the axially
With y=eMu(x) we obtain the eigenvalue problem moving beam
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Does a Partial Elastic Foundation
Leisnakott | INCrease the Flutter Velocity

. P.rofeslsor, - - -
st s f0f @ Pipe Conveying Fluid?

Boca Raton, FL 33431

e-mail: ielishak@me.fau.edu The effect of the elastic Winkler and rotatory foundations on the stability of a pipe

Mem. ASME conveying fluid is investigated in this paper. Both elastic foundations are partially at-

. tached to the pipe. It turns out that the single foundation, either translational or rotatory,

N. Impollonla which is attached to the pipe along its entire length, increases the critical velocity. Such

o ' Asystgnt Professqr, an intuitively anticipated strengthening effect is surprisingly missing for the elastic col-
Dipartimento di Costruzioni e Tecnologie umn on Winkler foundation subjected to the so-called statically applied follower forces.
o ‘Avanzlate, Yet, partial foundation for the pipe conveying fluid is associated with a nonmonotonous

Universita di Messina, dependence of the critical velocity versus the attachment ratio defined as the length of the
Contrada Sperone 98166, Italy partial foundation over the entire length of the pipe. It is concluded that such a paradoxi-

cal nonmonotonicity is shared by both the realistic structure (pipe conveying fluid) and in
the “imagined system,” to use the terminology of Herrmann pertaining to the column
under to follower forces.[DOI: 10.1115/1.1354206

1 Introduction In these circumstances it appears instructive to study the effect

. . f the elastic foundation on the stability of a realistic problem
In 1972, Smith and Herrmann published a study devoted [Q f . . . . g
the stability of the elastic Beck’s column under follower force amely the pipe conveying fluid. This problem is also a noncon

when the column is attached to the elastic translational Wink|3ervat|ve one, and has been extensively investigated theoretically,

foundation with uniform moduluk. They arrived at the para- SQperlmentally, and numerically. The most recent comprehensive

. . review of research in this area is given by d®aissis and L[11]
doxical conclusion that the flutter load does not depend of t §ee also Pdoussig 12]). The effect of elastic foundation on the
translational foundation modulus, irrespective of its magnitud X

Due to this surprising conclusion the paper by Smith an id conveying pipe was investigated in several studies. Becker

. . - et al.[13] illustrated the variety of behaviors for different kinds of
_Herrhmgnr[l] genehrated sevle_ral oﬁher itUd'eS' Thhese St.UdI'eS di Undations; Lottati and Korneckil4] derived numerous results
in their approach to explain the above mathematical resuff, , X f varvina fluid-over-total m ratio when onlv th
Sundararajaf2] showed that if the elastic foundation modulus i?r e case of varying fluid-over-total mass ratio when only the

. . anslational Winkler foundation was present.
nonuniform along the column axis then the flutter load depends ony, this paper we study the effect of the translational and rota-
the elastic foundation modulus. Other investigatdf8-5])

tory foundations on the stability of the pipe conveying fluid, with

showed that the noninclusion of the damping terms was the faglqic foundation attached to mart of the pipe. The analysis
responsible for the paradoxical conclusion arrived at by Smith al ludes, as a particular case, the presence of these foundations

Herrmann[1]. Note that the Smith and Herrmann conclusion petyong theentire length of the pipe, and allows the comparison

taining the Winkler foundation does not hold for the column oty other studies. We are interested in the effect of elastic foun-
rotatory foundation. Becker et al6] investigated this problem qations on the behavior of realistic problem, rather than “unex-
and concluded that even in the undamped case when the modtﬂg@ted behavior of an imagined system,” in the terminology of

of the rotatory foundation increases the flutter load of the SYSt%rmann[lo] as he characterizes the “follower forces.”
increases too. Panovko and Gubangvhmention, in the fourth

edition of their book, that the conclusion by Smith and Herrmann
[1]is “... wrong and represents a direct consequence of e2- Equation of Motion

tremely early transfer to the ideal elastic madel. Critical load Consider a slender cantilever pipe of lendthwith uniform
deand§ of t}lge_ stlfgngss p.c’(?ff'%'er;]t of the foqndaﬂfc;rfw.” In W oss-sectional arekand moment of inertia. The material of the
publications 0|ter[', ] criticized the very notion of follower pipe is assumed to obey a viscoelastic stress-strain relationship of
forces, since there is no experimental verificatiah least until the Voigt type withE, being the elastic Young's modulusthe
presently of the existence of the pure‘I‘y ;tatlcally gpplled fOllov"efnternal andb the external damping coefficient. The masé of the
forces. He quoted from HerrmaiiiO]: “It is a peculiar feature of .0 ¢ nit length is denoted by, . The pipe that is conveying
s_tablllty problems of elastlc_ systems subjectec(nonconservg- an incompressible fluid of densi:ySvith constant velocity/ rests

tive) follower forces that their analysis arose not out of a desire O a lengtha (O=<a=<I) along its axis on an elastic Winkler-type

practice or in the research laboratory, but rather becauskcthe
tiously applied follower forcescting on a given system were
arbitrarily prescribed to depend in a certain manner on deforma-

tion.” fu(x,)=

so that the forcd ,(x,t) per unit length associated with it is

U(a—x)w Q)

k+da
1Oy
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oM
Q=m—W. (7)

The constitutive equation gives

M=Egl| 1+ J —(?ZW 8
=Eo CE X2 (8)
w Equation(6), considering Eq94), (7), and(8) to eliminate forces
f andQ, becomes
El(l (?—(94W AT(72W Aa Va2
ol | 1+e5t) o T (PATT) Gz #PA G+ V g | W
+ 62W+bﬁw+f om 0 9
s Mgtz TP g0 Tl o Y ©
¥ 32
g By neglecting the third term in the left-hand side of Ef), as
being of the second order wv, the shear stresg is eliminated
\ from Eg. (3) and Eq.(5) to result in
" AW AHPA-T)
Q —
pT =0. (10)
oL as
w T+o* We assume that at the free end of the pipe the tension is zero and

that the fluid pressure is equal to the ambient presgurd; =0 at
x=1. Consequently,

(b) PA-T=0 (11)

] ] ) everywhere. Thus Eq9), after substituting expressions féy,
Fig. 1 Forces and moments acting on elements of (a) a fluid andm. becomes

and (b) the pipe

Elf 14¢2 (94w+ Al Ly 3)2 + 62W+bﬁw
ot o TPAL G TV ax) WM TE
and has the dimension of a force. The basic equation of motion for d d 2w
small transverse vibrationg(x,t) is derivable either from Hamil- +| kit dig JU(@=x)w—| kp+dyr JU(@—x) -7 =0.
ton’s principle ([15]) or through using the dynamic equilibrium
approach. The latter way will be adopted in this study, following (12)

Gregory and Paloussiq 16] and Bleving[17]. In addition to their tpe houndary conditions that apply to the cantilever pipe read
derivation, we introduce damping mechanisms and translational

and rotary foundations. W
Consider an element of a pipe and a fluid as shown in Fig. 1. w=0 and &ZO, atx=0
Let the internal perimeter of the pipe IS When the fluid flows (23)
through the deflecting pipe, it experiences centrifugal acceleration a\ o*w
due to the changing curvature of the pipe. The acceleration is M=EI 1+CE WZO, at x=1.

opposed by the vertical component of fluid pressure applied to the
fluid element and the pressure fortger unit length applied on In case of thepartial foundation in the interval &x<a<lI, the
the fluid element by the pipe walls. A requirement of the balandeurth boundary condition reads

of forces in two respective directions, namely, along the tangent to

. . . 3
the centerline of the deflected element and the perpendicular to it, _ IW _
yields the equations Q=El 1+CE ax3 =0, atx=l. (14)
Aa—p+ S0 3 When the foundation is attached along the entire length of the
IX as>= ®) beam the fourth boundary condition is more complicated,
a*w d 9\2 . P w o d d azw_o e
f—pAW—pA E+V5 w=0 (4) Q= Cﬂt ENE 2 29t ox2 at x=1.

. . : (15)
whereq is the shear stress on the internal surface of the pipe due
to the friction with the fluid. The equations of motion for the pipét is remarkable that in the latter case the rotatory foundation term

in the same directions are similarly found as k, appears in the boundary condition, since the expression for the
5 shear force in Eq(7) contains the ternm(x,t), responsible for
i +qS-Q a_W -0 (5) the effect of the rotatory foundation. We seek solution of @8)
ax ax? in the form
2w 2w w =Mt
R T ™t =0 ©) wixt)=eT2(x) (16)
28 28 at Jt The following dimensionless quantities are introduced:
whereT is the longitudinal tension in the pipe ais the trans-
verse shear force. The relationship between the shear @eal = X, me=oA:  w=0 /Mt Mp 2
the bending momeri¥l acting on the section reads L’ =P Eol ’
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- me a The solutions of the differential Eq§23) are given by
““Nmgmy 7T

4 8
y1(§>=j§1 CeMié; y2(§>=§5 C,eMé (26)

v kyl® kol? bi?
Ve Eol' XU E X2 EL p= VEol (m+m,) with the conventional modifications in the event that two or more
17) roots coincide. In Eq(26) \j, j=1,2,...,8, are theoots of the
characteristic equations
~c Eol 5 Eol 5 0 E,l L ,
y= 2 me+m, 1=z me+m, 2= 72 me+m, I+t oy N =[v"—(x2t @) N+ 2wvul+ 0B
2.0 (i—
Equations(12) and(15) become txited)to™=0; (j=1,....4 (278)
L(2)=(1+ o2V +[1v*~ x2(1+ 08)U(a—§)]Z'+ 20vuz’ (1+ 0y N ="\ +20vuh+ 0B+ w?=0; (j=5,... (27b
_ 21,—
Flop+(atwd)Ula=§)+oJz=0 (18) Upon introduction of Eq(26) in the conditions(24), (25), one
z2(0)=0; z'(0)=0; Z'(1)=0 (19) obtains the system of linear equations in terms of the vectof

" ) constantsC;
Z"(1)=0; (if a=1) (20) . 4 s o

(1+wy)Z"(1)— (xo+ ©8,)Z' (1)=0; (if a<1) (21) Zl C,=0; El C\;=0; 25 C\2eNi=0; 25 CinPehi=0
where the operatdt is defined in Eq(18), and the primes indi- . . I~
cate derivative with respect to the dimensionless coordifidibe 8 4 8
behavior of the nonconservative system governed by the above Cjehi‘”:2 CjeNi; > Cj)\je‘i“:2 Cj\jehi®
non-self-adjoint problem is dictated by the value of the real part of =1 =5 =1 =5
the dimensional exponenf$; in Eq. (16) or their dimensionless (28)
counterpartsw; in Eqg. (17). From Eq.(16) it is evident that if 4 8 4
Re(2))>0 the transverse deflections are time-wise unbounded,y' c.\2eha=>" C\Z%eM® D (1+wy)C\3eh®
and the flutter phenomenon occurs. On the other hand, negativgsl ' ! = =1 "
values of Req);) lead to decayingand, hence, stabl@scillations 8
of the pipe. The analysis requires the evaluation of sets of control N 3
parameters for which the stability of the system is lost. The value ~(xatwd)\;e" _(1+“’7)25 Cihjene.
of the fluid velocityv is taken as a control parameter while all the =
others are fixed. The minimum valuefor which the pipe under- These equations can be written in matrix form as
goes unstable oscillations is referred asdhcal velocity. In the EC=0 29)
following the nondimensional critical velocity,, is evaluated -
numerically by both exact and approximate analyses. The aphereE is the matrix with the following elements different form
proximate analysis may appear to be superfluous at the figgiro:
glance, yet its results are utilized as initial guesses for the iterative . .
solution scheme required in the exact setting. Ey=1 (1=1,....4; Egy=\;, (j=1,....4;

Eg=A7eM, (j=5,....8; Egx=AjeM, (j=5,....8;

4

3 Exact Solution

Instead of using Eq(16), we represent the solution in two  Esj=€% (j=1,....4; Es=-€4% (j=5,...,8;
regions: (30)

ey (x); for 0=x<a - Eej=X\j€N% (j=1,....4; Eg=—\;eN% (j=5,....8;
w(x,t)= ) )
x) ey, (x); for asx<l. (22) E;=APeh?, (j=1,....4; Ez=-\eN* (j=5,....8;
Equation(18) becomes Egj=(1+wy))\j?’e*i“f(X2+w52)>\je"i“, (=1,....4:
Li(yD)=(1+wy)yy +[ 12— (xo2+ 08) Y]+ 20vuy] Eng*(lery))\j?’e"ia, (j=5,....8.

2 —N-
HloB+ (X1t wd)+oly,=0; for 0sf<a In order for a nontrivial solutiol C;#0 of system in Eq(28)
(23a) to exist, the determinant of the matr must vanish. This re-
quirement leads, after some algebra, to a characteristic equation

La(Y2)=(1+0y)yy + v?y5+ 20vpys+(0f+ w?)y,=0; written in the following form:
for a<¢<1. (%) Det(E)=W(Ny A2, - .- NgX2,02,7)=0. (31)
T_he continuity conditions on the interface between the two r&ypstitution of the values of; from Eqgs.(27a) and(27b) into Eq.
gions read (31) yields the characteristic equation in terms«@fAt »=0 the

real parts of the eigenvalues, (k=1,2,...) arenegative. Asv

y(@)=yz(e) increases their magnitudes vary, and at a certain critical velocity

yi(a@)=y5(a) ve, the real part of at least one of the frequencies changes sign
(24)  from negative to positive, indicating the onset of instability. At the
yila)=y3(a) boundary of instability the real part of this frequency vanishes,
m , ” and its imaginary part is termed the critical freque . The
(It wy)yr(a) = (X2t 0d)Z' (1)=(1+wy)y; (a). method of solution is based on an optimization pmr?({:edure that
The boundary condition€19)—(21) are recast in the following keeps varying the velocity and the imaginary part Itw) of the
manner: eigenvalue while R@)=0, until a minimum is reached for the

, , " real function AbgDet(E)). The correspondent value ofis the
y1(0)=0; y1(0)=0; y3(1)=0; y3(1)=0. (25 (esired critical velocity only if the minimum of the latter function
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is equal to zero so that E431) holds; moreover, in order to  zero value from below, this implies that the critical velocity is

qualify asv, there should be no lesser valuewfor which the reached. Alternatively, the application of the Hurwitz criterion

same condition is verified. Analogous numerical procedure wéd49]) to Eq.(37) yields the sought critical velocity. The values of

utilized by Lottati and Kornecki14]. v, SO determined are utilized as input data for the exact analysis
In order to ensure convergence of the procedure to the exdeiscribed in Section 3.

solution it is advantageous to start the process from a known

approximate solution that is sufficiently close to the exact one. ® Numerical Results

this aim the Galerkin approximation is resorted to in order to ) L . "

furnish a representation for the starting point. As will be demon- T0 gain some insight into the behavior of the system, the criti-

strated, the combined use of the optimization procedure in ol velocity v, as a function of the foundation attachment ratio

junction with the Galerkin method for the initial guess turns out té is extensively investigated for numerous cases. For a better
be an efficient way to arrive at the exact solution. understanding on the contribution of each type of foundation on

the stability of the pipe, the cases of purely Winkler as well as
- . . . purely rotatory foundation will be considered first. Finally, the
4 Auxiliary, Approximate Solution for the Initial  general case of combined presence of both foundations will be

Guess addressed.
According to the Galerkin method the displacement function 5.1 winkler Foundation Alone. Let us investigate the case
z(§&) appearing in Eq(16) is expanded in series x2=0, so that only the Winkler foundation is present. Figure 2
N illustrates the dimensionless critical velocity,, for different
z(§)=2 Hiz(£) (32) Values of the mass ratin and the internal damping coefficient
=1 v. Solid line corresponds to the pipe without internal damping

(y=0); the dotted line indicates the cage 0.001; the dash-dotted
line is associated witly=0.005, whereas the dashed line depicts
set. read the casey=0.01. Inspection shows that the presence of a full
' foundation has a stabilizing effect, in the sense that the critical
(j+3)(j?+3j+2-P) - 2(j+3)(j2+2j—P) o velocity associated with a full foundatiofw=1) is greater than
F1 Iri— 2 ! that associated with a pipe without an elastic foundatie®0),
although this feature is more pronounced for0.3. Specifically,
+(j2+j-P)d*3 (j=1.2,...) (33) inthe casey=0.001, foru=0.1, critical velocity of the pipe with-
out foundation equals 4.362, whereas its counterpart for the full
foundation equals 4.420, constituting an increment of 1.33 per-
(X2+w8y) cent. Foru=0.3 the corresponding values are 4.749 and 5.538,
D B v for a=1 respectively, resulting in 16.61 percent increase. ke10.5 and
P= @y (34 wn=0.7, respectively, the increases are 26.71 percent and 7.93 per-
0, otherwise. cent. Investigation of the effect of partial foundation, which ap-
parently was not conducted prior to this study, for the pipe con-
veying fluid, reveals some interesting effects. It turns out that,
surprisingly, the critical velocity does not always vary monotoni-

whereH; are unknown coefficients;(£) are comparison func-
tions. The comparison functiorg(¢), representing a complete

zj(§)=

where

The coefficients in front of" (n=j+1,j+2,j+3) are chosen so
to be reducible to known Duncan polynomigl8]) for which the
parametep is identically zero. Substituting E¢33) into Eq.(18)
and multiplying the result by the comparison functigyté) and
integrating over the entire length of the beam, results in the set of
N algebraic equations

N 10
> AH=0; j=12,...N (35) s.6
1 9.2

whereN is the number of retained term. In E@®5),

1

0

To fulfill the requirement of nontriviality ¥ Hﬁsﬁ 0) the determi-
nant of the matrixA has to be set equal to zero. This leads to th
characteristic equation

5.
awstas ws 1+ ... +a;w+ay=0. 37)

The degrees of the polynomial equals M in the case of a 4,
rotatory foundation attached to the pipe alongeitgire length; it
equals N in the case opartial foundation. This is explained as ,
follows: From Eq.(18) we deduce that in case of fully attached
rotatory foundation the expressidr(z,) results inw®, sincez
also contairw in the first power, the result is the appearance)%)f
in Aj. For N-term approximation, consequently, we get term :

. N . ' . . 0 0.2 0.4 0.6 0.8 1
with ©*". In case ofpartial foundationP vanishes automatically a
so thatL (z,) results inw? and z; does not contaimw. HenceA ) ) ) N ) )
contain the termsw2 for N term approximation we get terms Fig. 2 Dimensionless critical velocity v, as a function of the

. 2N - - attachment ratio a of a Winkler foundation with modulus  x;
containingw=". _The stability analysis is then redu_ced to Fhe_ NU= 200 and damping coefficient &,=0.01, for different values of
merical evaluation of» from Eq.(37). Since the fluid velocity iS the mass ratio u and of the internal damping ~ (solid: y=0; dot-

the only control parameter, by its gradual increase we evaluate t88: 4=0.001; dash-dotted: y=0.005; dashed: =0.01). External
rootsw of Eq. (37) until the real part of one of them approaches damping 8=0.001.

o
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cally when the attachment length of the foundation increases Yer
from zero tal. In fact, for smaller values of the mass ratio, namel 44
©=0.1 or u=0.3, increase in the attachment length of the four e RSN

dation beyond a certain threshold leads tdrap of the critical <.375 [-—=—-—-—"" > NN !
velocity. It starts to increase again once the attachment leng “ N

increases beyond another value. For example, fe0.1 and 4.3s
y=0.001 (dotted ling, in the range 0.478a<0.883 the depen-
dencev,, versus the attachment ratio is a decreasing function wi, ,,.
v¢, reaching its minimum equal to 4.005 @+0.833; this value is

8.2 percent less than the critical velocity.(=4.362) of the pipe  , ,
with no foundation. The internal damping increases the critic -
velocity for low values ofu (inspect the case witu=0.1 or
©=0.3), whereas its contribution becomes smaller, although st™
stabilizing, for x=0.5 in the range €a<0.7. Internal damping
reduces the critical velocity fou=0.5 beyond the attachment ¢-25f —————— #=0; 5.=0.01
ratio 0.7. It affects likewise in the case=0.7, for attachment
ratio below 0.75. Such a reduction is usually characterized int ¢ 0.2 04 g O 0.8 1
literature as destabilizing effect, although Bolotin and Zhinzher

[20] warn that this term is “not a very appropriate concept.” ThiFig. 4 Dimensionless critical velocity v, as a function of the
may suggest that the terms stabilizing effect and destabilizing @ftachment ratio a of a Winkler foundation with modulus ~ x;
fect are scientific slang, although widely used. Recent paper bBys0, for different values of the damping coefficients Band & .
Semler, Alighanbari and Rdoussis[21] provides new physical Internal damping y=0.001; mass ratio u=0.1.

insight into this phenomenon. Note that the critical velocity ap-

preciably increases as the mass ratio grows. This[ re]sult was ap-

parently first pointed out by Gregory and Bawssis[16]. Note . . .
that for the follower force analog of this problem, without internaf® as influenced by th_e external dampidgind the_damplng asso-
damping but with partial foundation, was considered by Elish&lated to the foundation. As one can see they increase the flutter
koff and Wang[22], unaware at that time of the Koiter@] Velocity albeit not in large extent.

criticism on the very existence of the follower forces. In this case, . . .
the dependence of the critical load versus the attachment ratio hag-1 Rotatory Foundation Alone. C9n§|der now a pipe rest-

a single maximum; moreover, when the attachment is full, t{8d On @ purely rotatory foundatiofy;=0; x,#0). As in the
flutter load equals to that of the column without foundation. As wease of a purely Winkler foundation, the fully attached rotatory
see the consideration of the realistic probléiat of the pipe foundation has a stabilizing effect. Indeed, for the fully attached
containing fluid hasless amount of surprising effects than itspipes withu=0.3 andy=0.001(Fig. 5, dotted ling purely rota-
unrealistic counterpart, the column with follower forces, yet intuory foundation(y;=0; x,= 10) increases the critical velocity by
itively unexplainable effects remain. _ ) 37.9 percent. Note that the Winkler foundation wjth=10 and

_ The contribution of the Winkler foundation modulyg is con- =0 results in 0.84 percent enhancement. The nonmonotonic
sidered in Fig. 3(x=0.1). It shows that the amplitude of this henavior characteristic of purely Winkler foundation persists, al-
parameter does not alter the nonmonotonous behavior of the crifioyugh it is less pronouncedee Fig. 5. The effect of the internal

cal velocity as a function of the length of the partial foundatioryamping is similar in both the cases, and will not be recapitulated
The stabilizing effect of a full Winkler foundation is insignificant,j, this subsection.

although assuredly present, for mass ratie0.1. Namely, at
a=0, v,,=4.362; ata=1, v,=4.363 for y;=10 whereasv.,
=4.421 fory,=200. Figure 4 portrays the dependenggversus

275

U
\ .
N

N ’,

20 -2 i ) ) - . i
0 0 Fig. 5 Dimensionless critical velocity v, as a function of the
attachment ratio e« of a rotatory foundation with modulus X2
Fig. 3 Dimensionless critical velocity v, versus the attach- =10 and damping coefficient §,=0.01, for different values of

ment ratio a and the Winkler foundation modulus x1 (8, the massratio u and of the internal damping (solid: y=0; dot-
=0.01). Internal damping 9=0.001; external damping B=0.001; ted: ¥=0.001; dash-dotted: 5=0.005; dashed: y=0.01). External
mass ratio u=0.1. damping B=0.001.
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Fig. 8 Dimensionless critical velocity v, as a function of the

attachment ratio « of a generalized foundation with moduli ~ x;
=100, x, and damping coefficient 4,=0.01, §,=0.01. Internal
damping y=0.001; external damping B=0.001; mass ratio

p=0.1.
Fig. 6 Dimensionless critical velocity v, versus the attach-
ment ratio « and the rotatory foundation modulus X2 (6, ) -
=0.01). Internal damping y=0.001; external damping B=0.001; 5.2 Both Types of Foundations Present. The stability of a
mass ratio u=0.1. pipe resting on a generalized foundation, where the restoring

forces and the restoring moments act simultaneously, is of most
interest. Figures 8 and 9 depict the critical velocity farfixed at

A paradoxical effect of the partial foundation is evident fromt0 while x, is varied. They show that the stability behavior is
Fig. 5. Foru=0.5 the maximum value of the critical velocity is€ssentially like that of pipes on purely Winkler or purely rotatory
not reached when the rotatory foundation is fully attached to tfi@undation, depending on the ratio of the foundation moduli
pipe. Foru=0.5 andy=0.01 (dashed ling the maximum critical X1/x2 and the attachment ratia. Such an effect of the ratio
velocity is reached for the attachment equal to 0.874. The maxiz/ X2 is anticipated; the influence of the attachment ratio is less
mum critical velocity for a purely rotatory foundation with=0.7 ~ obvious. As we see until the value=0.6 is reached, the curves
and y=0.01 is achieved a=0.852, and drops thereafter. Still,associated with different values gf, are in close vicinity be-
the critical velocity for full foundation is greater than its counterfween each other. Onee>0.6 pronounced effect of the rotatory
part for the pipe without foundation. modulus occurs. Figure 9 depicts a sharp increase in the critical

Figure 6 illustrates, in the cage=0.1, the dependence of thevelocity for u=0.5 at specific attachment ratios. For example,
critical velocity versus modulus of rotatory elastic foundatign ~ ¥er= 7-273 fora=0.6 andy,=10, at a slight increase in the at-
and the attachment ratie. For the interval &:a=<0.6 the surface tachment ratida=0.69 the critical velocity increases by 18.86
appears to be quite flat, with sharp increase recorded thereaff@icent and equals 8.646. As the fully attached rotatory or Win-
The effect of the presence of the rotatory foundation is pr(lﬂer foundations, acting alone or in concert, have a stabilizing
nounced only whem>0.6. The influence of the external dampincgffect, one can wonder if the presence of a fully attached founda-
and of the damping associated to the rotatory foundation is féan of one kind only, with the other only partially attached, guar-
ported in Fig. 7. They both have a stabilizing effect, although th@ftees an increase of the flutter velocity. The answer to this in-
due to the external damping is larger.

Vcr

6.25

6

5.75

5.5

5.25

Fig. 9 Dimensionless critical velocity v, as a function of the

Fig. 7 Dimensionless critical velocity v, as a function of the attachment ratio « of a generalized foundation with moduli ~ x;
attachment ratio e« of a rotatory foundation with modulus x2 =100, x, and damping coefficient ;=0.01, ,=0.01. Internal
=10, for different values of the damping coefficients Band 6,. damping %=0.001; external damping B=0.001; mass ratio
Internal damping y=0.001; mass ratio u=0.1. p=0.5.
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quiry is negative. For example, a decrease of the flutter velocMisiting Research Scholar at the Department of Mechanical Engi-
occurs in the case when a fully attached soft rotatory foundatioreering of the Florida Atlantic University under the auspices of
(x2=1) is present along with a stiff Winkler foundationy{ the University of Messina, Italy. This support is gratefully appre-
=100) with attachment ratie=0.8. ciated.

6 Conclusions

The effect of the partial foundations was studied on the fluttfeferences
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partlal the estlma}te of the critical velocity may either decrease of  \n-Conservative Load,” ASME J. Appl. Mecht7, pp. 111-120.
increase depending on the attachment ratio and other parametges voloshin, 1. I., and Gromov, V. G., 1977, “On a Stability Criterion for a Bar
of the system. The news of two kinds appear to be generated. The on an Elastic Base Acted on by a Following Force,” Mekhanika Tverdogo
good news is that the paradoxical result characteristic of the[e] Ez'é"kg“fe&ham‘;ig;f%dﬁ ;nzd '\\;\?ih gér?pi/vlegl;%lﬂnﬂuence of Internal and
Beck’s column W'?h Winkler fou_ndann is absent in the reallsth Externa,ll D.';lmping o,n th;a Stability of éecl%’s Colhmn on an Elastic Founda-
system. Namely, if the foundations are attached along the entire tion,” J. Sound Vib.,54, No. 3, pp. 468—472.
length of the pipe the critical velocity increases. The bad news ig7] Panovko, Ya. G., and Gubanova, S. V., 198Tability and Oscillations of
the uncovered unexpected nonmonotonous dependence of the Elastic Systems, Paradoxes, Fallacies and New CongcdpitsRussian ed.,

. . . H Nauka Publishers, Moscow, pp. 131-1Ehglish translation of the first edi-
critical velocity versus the attachment ratio. This phenomenon ;. 1965 Consuitants Bureau, New Yark

could be explained due to following reasori$) Possibly, the  [8] Koiter, W. T., 1985, “Elastic Stability,” Z. Flugwiss. Weltraumforsct8,, pp.
damping mechanisms known to us do not exhaust all possible 205-210. n )

damping phenomena; one may speculate that in the future, a neld’ Zoggr'eve\,/é Té,3é996, “Unrealistic Follower Forces,” J. Sound Vili94, Na.
damp'ng mePhaU'Sm will be uncovered whose inclusion in t_h?m] H’errmann, G., 1967, “Stability and Equilibrium of Elastic Systems Subjected
linear analysis will remove the above nonmonotonous behavior. ~ to Non-Conservative Forces,” Appl. Mech. Re20, pp. 103—108.

Since in words of St. Augustine, we “know not what we know [11] Pddoussis, M. P., and Li, G. X., 1993, “Pipes Conveying Fluid: A Model

not,” the further speculation on this direction appears to be un- _ Dynamical Problem,” Journal of Fluids and Structur&spp. 137-204.
,d i t thi P t tl ) “S & PP tonicit [12] Padousis, M. P., 1998Fluid-Structure InteractionAcademic Press, London.
productve a is stage at leas®) mall” nonmonotonicity [13] Becker, M., Hauger, W., and Winzen, W., 1978, “Exact Stability of Uniform

exhibited in Fig. 9 foru=0.1 could well be attributed to the Cantilevered Pipes Conveying Fluid or Gas,” Arch. Me@0, pp. 757—768.
structural model usedBernoulli-Euler theory, use of refined [14] Lottati, I., and Kornecki, A., 1986, “The Effect of an Elastic Foundation and
theories may not be associated with nonmonotonicity in some 3fibD'515(;ga,t\'l‘ge 2':0’;;953207“ g‘;;tab'“ty of Fluid-Conveying Pipes,” J. Sound
ranges.{)f the parametel(§) Yet a.nOther eXplanat|On CO,U|d lie in [15] Benjamin, T. B 1961, “Dynamics of a System of Articulated Pipes Convey-
recognition of the fact that the pipe undergoes large displacement” ing Fluid. I. Theory,” Proc. R. Soc. London, Ser. A261, pp. 457—486.

and the nonlinear analysis of the problem is called for. This latteli6] Gregory, R. W., and Pdoussis, M. P., 1966, “Unstable Oscillation of Tubular

assessment expressed by the first author was shared by Koiter g;”g'lez"engom’eymg Fluid. 1. Theory,” Proc. R. Soc. London, Sei293,
[23]- A StUdy of the title prObIem in nonlinear setting Is underway[l?] Blevins, R. D., 1990Flow Induced VibrationsVan Nostrand Reinhold, New

and will be reported elsewherg}) One cannot rule out the pos- York, pp. 384-414.

sibility that even the nonlinear setting will not remove the non-{18] Duncan, W. J., 1937, “Galerkin's Method in Mechanics and Differential

monotonous dependence of the stability characteristics on the Equations,” Aeronautical Research Committee, Reports and Memoranda, No.
; . - 798.

elas_,tlc fou_ndatlons. Indeed, to quote ThompE:Zﬁ], the p'Pe con- [19] Krall, A. M., 1968, Stability Techniques for Continuous Linear Syste@war-

veying fluid belongs to the class of problems where.’ con- don and Breach, New York, pp. 41-56.

ventional structural theorems can be not only violated, but actu20] Bolotin, V. V., and Zhinzher, N. 1., 1969, “Effects of Damping on Stability of

ally reversed under fluid loading due to its essentially Elastic System Subjected to Nonconservative Forces,” Int. J. Solids S8uct.,

ti h ter.” pp. 965-989.
nonconservative character. [21] Semler, C., Alighanbari, H., and Rmussis, M. P., 1998, “A Physical Expla-

nation of the Destabilizing Effect of Damping,” ASME J. Appl. Mecl65,

pp. 642-648.
Acknowledgments [22] Elishakoff, I., and Wang, X., 1987, “Generalization of Smith-Herrmann Prob-

The first author appreciates discussions he had with Professor 'ﬁm ;’Vith ”;‘Z, 7Aig fzf Computerized Symbolic Algebra,” J. Sound Vib17,
; ; ; ; 0. 3, pp. 537-542.
Dr. Ir. W. T Koiter, Prof. A. Kornecki, .PrOf' M. P. _Paa)ussls, . [23] Koiter, W. T., 1995, private communication with I. Elishakoff.
Dr. I. Lottati, Dr. Y. J. Ren, and Dr. X. Qiu on the topic studied in 24 Thompson, J. M. T., 1982, “Paradoxical Mechanics Under Fluid Flow,” Na-

this paper. The study was conducted when N. Impollonia was a ture (London, 296 pp. 169-171.

212 / Vol. 68, MARCH 2001 Transactions of the ASME



Optimal Fiber Orientation in
Locally Transversely Isotropic
D. N. Robinson Cl‘eeplng StrUCtures

W. K. Binienda An approximate method is developed for comparing various fiber configurations in a
Assoc. Mem. ASME composite structure with the objective of achieving optimal resistance to creep failure.
S The class of composite structures addressed has a single family of long or continuous
Civil Engineering Department, strong fibers embedded in a creeping matrix material, e.g., a polymer, metal, etc. Thus,
University of Akron, the structure is locally transversely isotropic with the fiber orientation generally varying
Akron, OH 44325-3905 throughout the structure. The proposed method, intended as an early design tool, is based

on an upper bound on creep rupture time and an associated representative failure stress.
The latter is evaluated and compared for different fiber configurations, thereby identifying
that with optimal creep rupture resistance. This approach allows a substantial saving in
computational time by avoiding a detailed analysis of the actual failure process. Appli-
cation is made to a fiber-reinforced thick-walled cylindrical pressure vessel.

[DOI: 10.1115/1.1354623

Introduction structure, it is used in bounding the rupture time as proposed
earlier by Leckie and Wojewodsk®], Goodall and Cockroft3],

peratures in the creep range of their matrix material, they Suﬁg'onter[4], and Robinson and W¢b]. Upper bounds on the rup-

. ; . . - 1Ure time are found by considering an imaginary structure, identi-
_tlme_-t_jepen_dent deformation r?\nd even_tually_fa|I: The failure t'm€a| in shape and fiber configuration to that of the real one under
is critically influenced by the fiber configuration in the composng nsideration and subjected to the same loads. The material of the
structure. Design engineers need simple methods of assessingfi :

- . h ) ious structure is nondamaging and perfectly-plastic with a
effects of fiber orientation on creep rupture, especially for use Weld function that coincides with the isochronous damage func-
the early stages of design.

tion of the actual damaging material, i.e., of the Robinson et al.

A creep da_maglng structure initially incurs (_iamage In régio ﬁ% model. The bound calculation requires only the determination
of relatively high stress, leading to local softening and subsequegit (time-independent limit-load solution for the imaginary
redistribution Of stress as _the damage_ zone spreads throuQ.hOl_J ficture under the given loads, circumventing a detailed analysis
structure. Detailed numerical calculations of the stress redlstrlb&- the time-dependent failure process in the actual damaging
tion and corresponding failure are known to require substanti ure.
computing time even for relatively simple structures. Repeating Following Robinson and WéH], a global representative failure
such calculations for several fiber configurations in support of &ess is calculated based on the upper bound on failure time. This
optimal design can lead to prohibitive computational cost. The ¢ompuyted for each fiber configuration of interest in a composite
objective of this research is to provide a simple, yet reliablgycyyre; the configuration with the smallest representative failure
method of assessing various fiber configurations in a composigess has, relatively, the best creep failure resistance. Of course,
structure with an aim toward identifying that with optimal resistnis amounts to comparing various fiber configurations on the ba-
tance to creep failure. _ sis of upper bounds on their failure time. Ultimately, this must be

An approximate method is proposed that makes use of a cQiyyroporated experimentally.
stitutive model for_a creepi_ng, damaging, a_n_isotropic mater_ial in- Application of the present method is made to a thick-walled
troduced by Robinson, Binienda, and Miti-Kavunja]. This cyjindrical pressure vessel under interior pressure; we compare
model applies to composite structures having a single family g fiber orientations, circumferential and axial. As expected in-
strong fibers embedded in a creeping maftia., a locally trans- ,itively, circumferential fiber orientation is “optimal,” i.e., the
versely isotropic materiglIt incorporates an isochronous damag@etter of the two configurations examined.
function that depends on an invariant specifying the maximum
tensile stress normal to the local fiber-matrix interface. This stress
component is identified in Robinson et &l] as the principally constitutive Equations—Creep Damage

it

damaging traction in a continuous fiber, metal-matrix composite

material. Here, we assert that this stress component is similarlyAS the proposed method is based on the constitutive model of
damaging for any strongly reinforced creeping composite witRobinson et al[1], we begin by stating its essential features re-
long or continuous fibers, including glass and carbon fibeleting to the present work. Consider a composite structure having
reinforced polymer¢GFRP and CFRP long or continuous fibers in a creeping matrix matetkiy. 1).
Instead of using the constitutive law of Robinson ef &].in a The strong fibers generally vary in direction throughout the struc-

detailed analysis of creep and creep damage of a given compogi'tr@i the fiber direction.at e;ach point is denoted by a un.it vector
field di(x). A symmetric orientation tensdd;; =d;d; is defined

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF as in earlier Work’. cf., Spence{ﬁ], ROgerS[?]‘ Robinson and
MECHANICAL ENGINEERS for publication in the ASME durNaL oF Appuiep  DUffy [8], and Robinson et a[1]. -
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. The composite material is considered pseudo-homogeneous and
12, 1999; final revision, Aug. 1, 2000. Associate Editor: I. M. Daniel. Discussion Oﬂ'ansverse|y isotropic with its overall properties discernible by
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depart;g;zberiment; it is elastic, nonlinear visco(xsreeping and creep

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, al . e .
will be accepted until four months after final publication of the paper itself in thél@maging. The constitutive relations for creep and creep damage
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Ti(xkt) At time 7 local failure occurs at a poirfor pointsg in the struc-
ture wheregy/— 0. A damage front spreads from this point occu-
pying a volumeVy (Fig. 1) at timet>r. V' =V -V designates
the portion of the structure that can sustain stress at time

As in Leckie and WojewodsKi2] and Robinson and Wéb],
we introduce a global damage measure based on the Kachanov
continuity ¢, i.e.,

\p=1f yPHdV (6)
\4 \%

which has the properties =1 for an undamaged structure and
W¥=0 for a failed structure.
We note that ag/)=0 in Vp

f M*ldV:f Y PV 7
v’ \%
Fig. 1 Structure with strong reinforcement fibers
for all t.
Using (2), we write the rate of global damage as
¢ dav 1
Gi g 9¢ 1 1) —W=WJA”<oij,Dij>dv ®
€o (9(0'” log) ‘/Jn 0 v
) 1 1 where the constartt, is the time to rupture under the reference
Y=- TA”_'D (2) transverse tensile stresg, cf. Robinson et al[1].
(p+1)to ¥ Integrating (8) over 0—t while ¥ varies from 1-WV, there
in which oy is the (Cauchy stress{; is the creep rate of defor- results
mation, o, is a reference stress chosen in the stress range of 1 (1
interest anc:, ,n,p,t, and v are material constants obtained from Y(t)=1— —J' —f A”(oy;,Djj)dV|dt 9)
uniaxial, transverse creep rupture tests at a given temperature, cf., toJo| Vv

Robinson et al.[1]. The scalary is the material continuity . R ) .
(Kachanov[9]); it equals unity for a material element entirerWhereU‘J(xk‘t) is the (redistributing stress field at time.

intact and zero for an element having lost load-carrying capacity
entirely.
The stressoj; and material orientatiod;; enter through the Bounds on Global Damage-Representative Failure
functions ¢ and A defined in Robinson et al1]. As we are Stress
principally concerned with creep failure, the flow functignis i
not of immediate interest and will not be restated here. The iso-Guided by the work of Goodall and Cockr¢8] and Pontef4],
chronous damage functioh is we specify a fictitious perfectly plastic material whose yield func-
tion is
N
A(ay :Dij)zo__o 3) ®(aij ,Dij) =A"—(Yloy)" (10)

whereA is the isochronous damage functi8) of the real mate-

in which ; : I ; :
rial andY is a uniaxial yield stress in transverse tension. As ear-

1 lier, o, is a transverse reference stress.
N(oij,Dij) = E(Jl_JOH VT (4) The flow law for the fictitious perfectly-plastic material is
where the angular brackets (4) are the Macaulay brackets. ' iFj, e _ .
The invariants contained i#) are defined as follows: é_o_)‘A Qjj; if =0 and Q;;0;;=0 11
d=0y J,=Djjoy =3 &l :
L= o= R 2T S - =05 if ©<0 or ®=0 and Qoy<0 (1)
[o]
1 . L
1=Dijsji 1o=DjjscSi T=Jz+ 71%~1,. in which x>0 and
dA
s;; are the components of the deviatoric stress. Q; BT WIS
Physically, the invarianT in (5) is the square of the maximum d(aijl o)

transverse shear stress at material element in the strubstimeé4) 1 1
represents the maximum transverse tensile stress, i.e., the maxi- = =(8;—Dij)+ —=| s+ 5 (Dj;+ 8;j) — DjsSci— DiiSik |-
mum tensile stress normal to the local fiber-matrix interface. 2 2\/T 2
13)

Global Structural Damage For the given tractiondT; on S; of the fictitious (and real

The structural problem of concern is illustrated in Fig. 1. Thétructure)Y is chosen so tha;=T; is the limit load for the yield
structure is fixed over part of its bounding surfa&gand loaded condition(10). Note thatY can be inhomogeneous, i.e., a function
with tractions T;(x,,t) over the portionS;. The tractions are Of position.
supposed to be applied relatively abruptly and held constant thereAt the limit load T, the limit stress fieldah in the fictitious

after. The conditions are isothermal with the ambient temperatwsgucture is constanttime-independentin Vp, that part of the
in the creep range of the matrix material. volumeV in which plastic flow occurs. The strain rate ¥y is
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fully plastic, compatible and related t):}LJ through(11)—(13). The 6
remaining part of the volume is rigid witA"<(Y/o,)” and s,FJ’

=0.
We assume that the isochronous failure surfakesconst. are
convex in stress space, cf., Robinson ef Bl As A in (3)—(4) is (a)
homogeneous of degree one in stress,is a similarly convex z

-

and, by definition
1%
A"(0f} ,Dy) = A"( ,Dij) = ———A¥(ay; ,Djj) (07— 7)) =0
ij
(14)

for any two stress states; and a'ibj . We identify o, = o; in (14)

as the stress field in the actual solution of the real structure. We
take o} = of; as the limit load stress field in the fictitious struc-
ture. With these identifications made, multiplyifg4) by A>0

and integrating ove¥p we obtain

[}

(b)

=

r

f A¥(oy; ,Dij)dV>f A"(af; ,Djj)dV (15 _ _ o _
Vp Vp Fig. 2 Thick-walled cylinder under interior pressure (a) cir-

_— . . cumferential reinforcement, b) axial reinforcement
where the contribution from the third term {f4) vanishes by the )

theorem of virtual work, inasmuch as both of the statically admis-
sible stress fieldyﬁ and aibj are in equilibrium with the same

tractions onSy. Further, asA"=0, we can rewrite15) as numerical, incremental structural analysis allowing for redistribu-
tion of stress as the damage region spreads throughout the cylin-
J A¥(ay; ,Dij)dVBJ A”(Uh— ,Dij)dV. (16) der and accounting for near singular response resulting from
v Vp Kachanov-like creep damage evoluti@@i. Zienkiewicz and Tay-

lor [10]). Thus determining the time to failure for each fiber con-

Using (16) and recognizing the time mdependencea}]‘, © figuration, the “optimal” configuration is that having the greatest

becomes failure time. Note that in order to conduct these complete solu-
t|1 L tions, we must have the creep/creep rupture behavior fully char-
Y(O)<1-+ vJ' A*(oj;,Dij)dV|. (17)  acterized, viz.(1)—(5), as well as the anisotropic elastic behavior.
° Ve The direct approach can require substantial material characteriza-
In the creep failure limitt—tg as¥—0, (17) gives tion and computing time.

In applying the proposed approximate technique we may simi-
larly choose several fiber configurations, and for each, determine a
> (18) - i h ) i =
o L[ Avet D)dv o (0oRr rgpre§entatlve fallu.re.stres:h usmg(lg). Trlls requires f!ndlng a
V)y ij = o, (time-independentlimit load stress fieldoy; for each fiber ar-
P rangement. That configuration having the smallegtis “opti-
In (18) we denote the upper bound on the rupture tip@st,. mal.” Here, for illustrative purposes we shall compare only two
Consistent with(2), we identify o as the representative failurefiber-reinforcement configurations in the cylinder, circumferential
stress, i.e., the uniaxial transverse tensile stress having the failgr@l axial. In each case the limit load stress fields are relatively

tr 1 ty

—=<

timety, thatis easily found. For off axis reinforcement of the cylinder and in
or [1 v more general structural problems, the determination of the limit
—= —f A"(ah ,DijdVv (19) load stress fielckrh can also be relatively difficult. Numerical
o |V Vp (finite element methods have been developed and are available

Application of the method requires the representative failuf@" Solving the limit analysis problem, cf., Zienkiewicz and Taylor
stress(19) to be calculated and compared for various fiber con="-1- . . .
figurations in a given structure. That having the smallest represen Ve Now apply the proposed technique to a thick-walled cylin-

tative failure stress is the optimal fiber configuration. AlthougR®" Under interior pressuge The cylinder has closed ends with

relating only to upper bounds on the actual failure time, we asséif€’ and outer radii denoted layandb, respectively(Fig. 2). In
that this method provides a meaningful comparative measure §fmS Of the cylindrical coordinateg,@,r) of Fig. 2, the nonzero
the resistance to creep failure of the different fiber configuration&€ss components are
Application—Thick-Walled Cylinder 2,04 and oy (20)
As an example problem we choose a fiber-reinforced thickhe cylinder is taken to be in a condition of generalized plane
walled cylinder under interior pressupe The associated design Strain, i.e.,=const. The equilibrium equation relating, anda,
problem may be stated as: What is the configuration of a sindfe
family of fibers(with other features essentially constant, e.g., fiber d
density, temperature, eichat leads to the longest creep rupture —(ro,)=0y. (21)
time of the cylinder for a given pressup? dr
A direct approach to answering this question would be . I . . .
choose several fiber configurations, and for each, conduct a ;ﬁﬁa‘ for axial equilibrium, involvingr , is

b
1t is known from experiment thaA =const. surfaces are generally convex in 7Ta2p= f o 2mrdr. (22)
stress space. Specifically, for the pseudo-homogeneous, highly anisotropic class of a

materials addressed here, such experimental evidence is not definitive. Experiments

regarding the question of convexity are in progress. The compatibility equation is
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d( o )= 23) 0 0 O

——(rey)=¢

dro A=? and Q,;=[0 1 0. (32)
and the boundary conditions are ° 0 0 O

(24) Following a similar procedure as that for circumferential rein-

forcement, we construct a statically admissible stress ﬁé}ld
The constitutive equations for the imaginary, nondamaging, péiMe take
fectly plastic material ar¢10)—(13).

o (a)=—p and o,(b)=0.

U(v—1)

a a
Circumferential Reinforcement. We first consider a circum- v v
ferentially reinforced cylinde(Fig. 2(a)). The components of the ob(n=p o= T ORI CEN) (33)
orientation tensor are b -1 a -1
a b
D,,=D,=1 otherwiseD;;=0. 25
22 2 ij ( ) and
Calculating the relevant invariants (&), we determiné\ from (3) b2
and();; from (13), i.e., ) Yot
L v—1 a\ -1
1 0 0 ag(r)=p b (=211 T (34)
A= and 0;=[0 0 0 (26) a -1
[0}
0 00 These are easily shown to satisfy the equilibrium &4) and the

boundary condition$24). The stress componenﬁ(r) is not de-

We now construct a statically _ad_m|55|ble stress hgjdconss- . termined uniquely; it can assume any form satisfying the equilib-
tent with a lower bound on the limit load for the fictitious plastig; Eq.(22)

cylinder. The stress componemt%(r) andarL(r) cannot be found Now, we take
uniquely; they are only required to be statically admissible, i.e.,

any forms satisfying equilibriunf21) and the boundary conditions v—2
(24). v—1 a| -1
For the axial stress component we take Y(r)=oy(r)=p o (T (35)
p a !
oy =Tz (27) . o -
. as the(inhomogeneoysuniaxial yield stress of the fictitious plas-
a tic material.

_ o o . Thus, as beforeg}; = (% 0, 07) constitutes a lower bound

stressY as satisfies the yield conditiofiL0).
D Again using(11), we calculate the plastic strain rate fie’éﬁ
Y:a'lz‘zb—z_ (28) associated with the lower bound stress fi&fpl. Thus,
-] -1 . Lyv—1 - .
& .| O & &
a .—"—x(—”) Z="_p. (36)
€o 0o €0 &9

Thus, of;= (07} .0 ,07) constitutes a lower bound stress field; . . o .

i.e., it is statically admissible, and throug®8) and (26) satisfies ~ With A =const. and using34), (36) satisfies compatibility23)

the yield condition(10). and the generalized plane-strain conditiop= const. With these
Using the flow law(11), we calculate the plastic strain rate fieldconditions metg; qualifies as the limit stress field for the imagi-

SIFJ’ associated with the lower bound stress ﬁehj_ There results hary perfectly-plastic structure. In this case, the fictitious plastic
material has an inhomogeneous yield stress give(35y, under

b feb\vt this choice we again recognizé=V.
— . eh=gf=0. (29) As earlier, we us€19) to calculate the representative failure
stress, giving

This satisfies the compatibility E423) identically. Further, with (V_Z) (v=Dlv

€o 0o

A=const. in (29) the generalized plane strain conditian, 5 v 1

=const. is satisfied. With these conditions mt%‘},qualifies as the TRrA=P 5 =TG- . (37
limit load stress field for the fictitious perfectly-plastic cylinder E 1 E ! Y 1
having a yield stres¥ given by (28). a a

Recognizing that/p=V, we calculate the representative failure

stress for circumferentially oriented fibers fraft9), i.e. The better fiber configuration in terms of creep failure resis-

tance is the smaller df30) and(37). The ratiooga/ orc iS

p 2 (v=1)lv
ORC= T (30) b\ 1
(_) 71 O'RA_21/V V_2 a 38
a (T_Rc_ v—1/p\ - 27»=1) . (38)
Axial Reinforcement. Next, we consider axial reinforcement a -1

Fig. 2(b)). Now, the components of the orientation tensor are . . N .
(Fig. 2b)) P This ratio is plotted in Fig. 3 versus the material parametéor

D,;=D,=1 otherwiseD;;=0. (31) specified ratios of outer to inner radius of the cylintéa. Evi-
! dently, asora/orc>1, circumferential reinforcement is the bet-
Evaluating the appropriate invariants @) leads toA and{);; as ter fiber arrangement. Figure 3 exemplifies the convenience of the

216 / Vol. 68, MARCH 2001 Transactions of the ASME



Ora/ Ore bound on creep failure time, is calculated and compared for vari-
7 b/a->6 ous configurations of a single family of fibers in a creeping com-
posite structure. Upon comparing various fiber arrangements, that
6 having the smallest representative failure stress is the optimal
choice. The present method avoids potentially costly detailed
analyses of the actual creep/creep rupture process for different

fiber configurations. It requires the calculation of only a time-
independent limit load solution of a fictitious perfectly plastic
4 structure having the actual geometry, fiber configuration and
given loads.
3 b/a=2 An application is made comparing axial and circumferential
fiber configurations in a pressurized thick-walled cylinder. As in-
tuitively expected, circumferential fiber orientation is found to be
“optimal” in creep rupture resistance. The results are examined
for the limiting case of a thin-walled cylinder and shown to be
1 consistent with an exact solution obtained earlier in Robinson
et al.[1].
; The best fiber arrangement for creep failure resistance in a ho-
2 P 3 10 7 mogeneously stressed structure, where no stress redistribution oc-
curs, is identified as that having the least value of the invahgnt
Fig. 3 Ratio of representative failure stresses o g,/ 0gcversus  viz., that with the least tensile stress normal to the local fiber-
v for various b/a matrix interface. It is conjectured that the same fiber arrangement
likewise may be optimal relating to fast fracture and fatigue.

An earlier paper by Robinson and Weéi| addresses a compa-
representative failure stress as a measure of creep rupture regigte bounding method in which the fictitious structure is consid-
tance; the ratiergp/ o is virtually insensitive to the exponent  ered nondamaging and viscous with a dissipation potential func-

. . . tion that coincides with the isochronous damage function of the
Limit/Thin-Walled Cylinder actual damaging material. The bound calculation in that case re-
We note that the bracketed term (88) has the thin-walled quires only the determination of(§me-independentsteady-state
limit (b/a—1) solution for the imaginary viscous structure. Similarly, this avoids
b\ 2 a detailed calculation of the actual time-dependent failure process.
) -1 As the representative failure stress is based on an upper bound
lim ( V—Z) a —> (39) on the _failure t_ime, i_ts appl_icabili_ty as a comparative measure for_
b=al | -1/ [p\»~2/v=1 : assessing optimal fiber orientations needs to be verified experi-
= -1 mentally. An experimental program addressing this and other fun-
damental features related to this research is currently in progress
Into (38) this gives under funding provided by the National Science Foundation.
Ora The class of structures addressed in this paper is of practical
lim, ,——=2 (40) interest in its own right. Moreover, the work admits an extension
ORrRC to structures of particular interest, having two or more families of
for a thin-walled cylinder. This is consistent with the exact solustrong fiberdas angle-ply, cross-ply and woven compogit&is
tion for the thin-walled cylinder, cf., Robinson et &1]. extension is a topic of current research of the authors.
For any homogeneously stressed structerg., the thin-walled
tubeg in which the stress field does not undergo redistribution, and
is thus time-independent9) becomes

5 b/a=4

2 b/a->1

a
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Determination of Poisson’s Ratio
by Spherical Indentation Using
Neural Networks—Part I: Theory

When studying analytically the penetration of an indenter of revolution into an elastic

half-space use is commonly made of the fracEpaE/ (1 —v?). Because of this, onlE,

is determined from the indentation test, while the value isfusually assumed. However,

as shown in the paper, if plastic deformation is involved during loading, the depth-load

trajectory depends on the reduced modulus and, additionally, on the Poisson ratio explic-
itly. The aim of the paper is to show, with reference to a simple plasticity model exhibiting

linear isotropic hardening, that the Poisson ratio can be determined uniquely from

spherical indentation if the onset of plastic yield is known. To this end, a loading and at

least two unloadings in the plastic regime have to be considered. Using finite element
simulations, the relation between the material parameters and the quantities character-

izing the depth-load response is calculated pointwise. An approximate inverse function
represented by a neural network is derived on the basis of these data.
[DOI: 10.1115/1.1354624

D-64289 Darmstadt, Germany
e-mail: tsakmakis@mechanik.tu-darmstadt.de

1 Introduction For spherical indentation, the functiéhreduces to the simple

The knowledge of Poisson’s ratio is of interest when discussiffg'™ P~E/(1—»?), provided the deformation is elastic. How-
vibration problems[1-3]), evaluating the toughness of composgverv, it cann_ot be concl_uded that this relation holds in the case of
ites (see, e.g.[4]), etc. However, especially for foils and films, itelastlc-plastlzc deformation. Le&, de_note the rt_educed modulus,
has been claimed to be difficult, if not impossible, to determingr=E/(1— %), and suppos® to satisfy a relation of the form
the Poisson ratid[5]). In case of nanoindentation this difficulty P—P(E >
arises from the correlation of the unloading stiffnésand the =PEv ) @)
reduced modulug, . This results from analytical solutions for anfor the case of elastic-plastic deformations. Then, it is possible to
elastic half-space in contact with an indenter of revolutigB~ determiner from (2) in the form

8]). —
It is well known that the indentation test can be employed to v=v(P.E,...) ©)

obtain mechanical properties of materials. For example, one GgvidedP is invertible with respect to.. Note, that the missing
determine the Young's modulusee, e.g.[9-13), by using an variables in(2) or (3) are the parameters governing the hardening
assumed value for Poisson’s ratio Olaf [14] has carried out response and the quantities describing the geometry of the
elastic-plastic finite element calculations for pyramidal indentegioblem.
in order to inVestigate the SenSitiVity of the so determined value Of|n the present work, a neural network is proposed to represent
Young’'s modulus with respect to different values:oflt turned the functionv. Previous work has shown that the problem of
out thatv has only a minor influence on the determined value @fjastic-plastic parameter identification from spherical indentation
E. o o ) ] data can only be solved sufficiently accurate by using neural net-
When considering spherical indentation of an elastic-plastigorks, if a priori knowledge is used for the formulation of the
material, the load® is commonly plotted against the indentationinput and output quantities of the netwa(fi5,16)). To this end,
depth h. Clearly, for a given material, the response Rfis a the available analytical solutions for the indentation of an elastic
functional of the history oh. However, for a fixed loading history half-space will be discussed in the first step. Then, these solutions
(history ofh), one can regard differeft P-plots as resulting from il be generalized to the case of elastic-plastic loading in analogy
the indentation of materials_with different param_eters. In Oth% (2) From dimensional ana|ysis of the genera”zed equationsy
words, theh-P-plots may be interpreted as a function of the madimensionless-dependent quantities can be derived, which repre-
terial parameters involved in the constitutive theory and the iRent the effects of Poisson’s ratio and the hardening properties of
denter geometry. Such a function can be determined pointwigRe material and which are invariant to the associated elastic
numerically. Generally, a function of the form deformation.
Note that in our paper the assumption is made that the Pois-
P=P(E,v ) 1) son’s ratio remains constant du_ring pla_lstic deforma_tion._ This is
YT the case, e.g., for metallic materials which we have in mind.

applies for spherical indentation and given loading history, whe At e
E denotes the Young’'s modulus amdhe Poisson ratio. z Derlvat.lon of the I.nput Quantities )
The solution for elastic contact of nhonconforming surfaces has

Contributed by the Applied Mechanics Division offf AMERICAN SOCIETY OF been derived by Hert£6]. In the case of two elastic solids in
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF ApPLIED ~CoOntact, which have a spherical geometry in the contact region,
MECHANICS. Manuscript received by the ASME Applied Mechanics Division,the relation between the loaé and the approact$ of distant

March 26, 1999; final revision, November 1, 2000. Associate Editor: K. T. Rame: i i i i i
' ' ' ' ints in the tw li 17] p. is given
Discussion on the paper should be addressed to the Editor, Professor Lewizb'?. ts the two so d$see[ ] P 93 S give by

Wheeler, Department of Mechanical Engineering, University of Houston, Houston, 4
TX 77204-4792, and will be accepted until four months after final publication of the P=-E*|R*&°, 4)
paper itself in the ASME QURNAL OF APPLIED MECHANICS. 37
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Fig. 2 Sketch of a spherical indentation depth-load response
Fig. 1 Sketch of the geometry of spherical indentation with for elastic-plastic deformation
small overall plastic deformation

By inserting(11) into (4), it follows that

where
4
11— 1-9f P=_E*JR*(h—h,) (13)
== + (5) 3
E’ E E;
and further
and
4 2/3 4 2/3
L.t 1 ©) P2’3:(§EHR*) h—(gEf \/R*) h, . (14)
R* R Ry _ _ T
In these relationsE and v are Young's modulus and Poisson’sThIS last equation may be rewritten in the general form
ratio of the specimen an#; and »; are Young’s modulus and P?3=Mh-B, (15)

Poisson’s ratio of the indenter, respectively. The radius of th

indenter is denoted bR and the residual surface of the specimex" ere

may have a radiuRs at P=0 (see Fig. 1 Note, that for deriving m for elastic loading(0O<h=<h,)
(4) the relationRs>R has been assumed. =[m* after plastic loading , (16)
To describe elastic-plastic deformation behavior, a plasticity
law with yield stress at the beginning of plastic flé&gyand linear 0 for elastic loading(0<h=h,)
isotropic hardeningmodulusEy) is assumed. Note, that within ~|b* after plastic loading ' (17
this work E1 denotes the slope of the hardening rule in the plastic
strain-stress diagram. The onset of plastic yield during spherical 4 . 2B
indentation is given fow=0.3 by (see Johnsofl7] p. 155 m:= §Er R| (18)
* 773R2 3 4 2/3
Py =Py, -0 ggez (16" ™ - ::(55: ¢R—) | 19)
where in deriving this formula use has been made of the von b* :=m*h, . (20)

Mises yield criterion. Clearly(4) applies foré= &% ,
Next, consider a loading history with loading until a point

85 =8y|,-03 (8)  Py(hy), h>h, and unloading t®=0. By plotting the data in the
as well, whered, is the value ofé at the beginning of plastic form P2’3'aga|nsih, two linear regimes can be conside(sde Fig.
yield, the corresponding value fé¥ being P* : 2). The first one hc_JIds d_urlng _Ioadlng forjsfhg h, and the sec-

4 ond linear regime is valid during unloading after plastic loading
4 (h,=<h=h,). Accordingly, the value ofn can be determined from
— [ 3 r t
P; _§E: R*é;‘ : ©)  the elastic loading (&h=h,), while the values oim* andb*

. o . can be obtained from a regression analysis of the unloading data.
Now suppose the specimen to be plane at the beginningRue., The variables prescribed by geometry, material and loading
=o and R* =R. Solving (9) with respect toé’; and taking into process are
account(7), as well asR* =R,

- e (R.hy,v,E} ko Ep). (21)
Eyz 0.87TE—2 (10) Now, suppose the quantities
r
m,h, ,P;,m* b* 22
In the context of spherical indentation, the approadh given (m.hy Py ) (22)
by to be functions 0f21):
5=h—nh,, (11) m=m(R,h;,v,E} ko,E7), (23)
whereh denotes the indentation depth ahdrepresents the re- ho=h(R.h v.E* ki E 24
sidual depth resulting from an inelastic deformation of the speci- y=Ny (R 1B ko, B, (24)
men. Using(10) and (11), the onset of plastic yieldh;=0) oc- P,.=P,(R,h,,»,E* ko,Er) (25)
curs for the first time at the yield depth T R T
" 2 m* =m* (R,hy,v,Ef ko,E7), (26)
—y = —0 * = ~
R (0'8” E:‘) 05 =Nyl-oa. (12) b* =b* (R,h,»,E¥ ,kq,E7). (27)
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Table 1 Dimension analysis of elastic-plastic spherical inden-
tation with loading and unloading

R

by v Ef ko Er m h P m*
[N] 0 0 0 1 1 1 23 0 1 2/3
m 1 1 0 -2 -2 -2 -1 1 0 -1

It is worthy mentioning thatv is assumed to enter explicitly in

(21) and thus on the right-hand sides(@B)—(27). The quantities

P 2/3
= (—‘) . (37)

p{®

Using(19), (18), and(6), it can be shown that the ratio* /m and
thereforell; may be expressed in terms RfandRg,

R —-1/3
g E) ’
which represents the residual geometry of the specimen surface.

m*
[;=—=

= (38)

(22) can be calculated as the result of a so-called direct problé3n Finite Element Simulations

using the finite element method as explained bef{sae Section
3).

)Relation (23) is already given by definitior{18) so that for
known m, the reduced modulug; is known as well. Forv
=0.3, the analytical solution faq24) is (12). The functionb* can
be obtained by a linear combination Bf and f* using (15)—
(17), (19), (20) provided the point Ifi; ,P??) is known. The Egs.
(24), (25), and(26), which indicate an explicit dependency on

The finite element mesh is displayed in Fig. 3. It consists of

eight-node axisymmetric elements, which turned out to be optimal
for solving contact problems with spherical indentatieae[18)).
The part of the mesh, which is concerned with the contact prob-
lem is displayed enlarged on the left-hand side. In order to achieve
accurate results for very different sets of material parameters, this
refined region should be proportional to the contact radius being
achieved. The contact radius can be estimated for glvgnby

can be written in dimensionless form. The dimension analysising(12) and the assumption of zero piling up.

given in Table 1 implies a rank=2.
Note thatn=7 quantities are related in any of the E¢84)—

To minimize the amount of finite element meshs, three different
sizes of maximum contact areas were defined, as shown in Table

(26). Hence, when writing these equations in dimensionless for®, The edges of the mesh are 1000 mm and the radius of the
each of them will involven=n—r=5 dimensionless quantities, indenter isR=200 mm. However, the results can be scaled to any

e.g., of the form

hy - (h, ko Ep
Hl'—h_y—nl(ﬁ,l/,g,g , (28)

P2 [h, ko Er
Hz’:m_htnz(ﬁ"”ﬁ’ﬁ , (29)

m* . (h ko Er
H3-—W—H3(E,V,§,§ . (30)

indenter radius by using the Pl-theorem.

The constitutive law assumed is an elastic-plastic constitutive
model available in ABAQUSsee Hibbit[19], Section 4.3.2-1
based on a von Mises yield function with linear isotropic harden-
ing and a flow rule which represents an associated normality rule.
Other type of constitutive equations like those derived on the basis
of the scale invariance approad20,21]) can also be employed,
but such issues may be taken up in a future study. As already
mentioned in Section 2, the yield stress is denoteddpgnd the
tangent modulus & .

For a set of material parameters, which is typical for steel, a

Herell, denotes the depth related to that depth at which plasfgte element simulation has been carried out for each mesh. The

flow occurs for the first time. For=0.3 we have, by virtue of
(12,

I} =ﬁ1(%,o.3,;—2, ;) : (31)
¢ B
-2
R OACE @
or
. [hy ko
g o). -

Now, we assumél, andIl; in (29),(30) to be dependent o, /R
andky/E} over the functionlIj (h,/R,kq/E}), so

EF)’

;=11 (H* v—)
3 3 1 EF&

Hz—ﬁz(H’{ W, (34)

(35)

indenter has been pressed eight times of the yield depth into the
material and was unloaded to the half of the total depth. For this
material, mesh M2 has the optimum contact discretization. The
resulting depth-load trajectories for the three finite element meshs
are displayed in Fig. 4.

It can be seen that the loading response for M1 deviates slightly
from the curves of M2 and M3 which are nearly coincident. These

.

it

Zoom
<

| | i

Fig. 3 Finite element mesh for spherical indentation with low

loads
A motivation for this assumption, based on finite element simula-

tions, will be given in Section 3.

In order to interpret the dimensionless quanfity, we intro- Table 2 The three groups of finite element meshs

(all lengths

duce the total loac®® for a fictitious elastic loading until the "™ L™
depthh;. According to(15—(18), Mesh  Element Size  Contact Radius Depth Range
4 M1 0.3906 a<25.00 6.2510 2<h
P§e>:=§ Er VR = {m*h?. (36) wm2 0.0977 a<6.25 2510 3<h,<6.25 102
M3 0.0244 a<1.5625 h<2.5103

Thus,II, can be interpreted as the ratio
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5000 Table 3 Ranges of the dimensionless parameters for the for-
mation of training and test patterns
4000 | T M Parameter Range
—>— M2
o M3 I [-] 1.5-8
3000 v [-] 0.1-0.45
z ko/E} (-] 10°-10°2
o Er/E} (] 103-10""
2000
1000
these intervals are defined as shown in Table 3, from which 100
0 sets were generated. The valueslIBf at which unloadings are
j ; ;; é 1‘0 » inserted are chosen in equi-distant steps of 0.5 so that 14 unload-
h [wm] ings are available for each simulation.

Fig. 4 Depth-load trajectories for the the finite element
meshes M1-M3: E=200 GPa, »=013, k,=250 MPa, E;=10 GPa

(a<2.2mm)

Before going any further we will demonstrate thegffects the
depth-load trajectory explicitly and not only by meand€t This
will justify the assumption made thatappears in(21) explicitly.
To this end the values dfl, andIl; have been numerically cal-
culated and plotted against and E/E} for II] =const. The
meshed surfaces in Figs. 6 and 7, which are parametrized with

calculations show on the one hand the mesh independency and B, indicate thatll, andIl; are affected by. Moreover, these

the other hand the higher accuracy due to the three discretization
categories.

Using variableh;, v, ko, andEy each argument of the func-
tionsIlI; in (28)—(30) can be chosen independently. Although it is
theoretically not necessary, the reduced mod@{isis chosen
randomly between 50 GPa and 600 GPa for each finite elem:
calculation in order to demonstrate that quantifies and there-
fore v, depend orky/E} and E+/E} only. Note that(28)—(30)

are functions o} only, and therefore, without loss of generality, 095

the spherical indenter is modeled in the finite element simulatio™”
as a rigid surface.

Figure 5 shows three finite element simulations, witbeing '
the only dimensionless quantity that has been chandgfl (
=const). The values o, h; , and P;‘ , indicated in the plot,
have been calculated usiri8), (12), and(7), respectively. The
good agreement of these analytical values with the numerical |
sults shows that the finite element mesh is suitable for modeli
the elastic-plastic half-space accurately.

Next, we use finite element calculations to get valueslior
andll; for given valueg21), which represent pointwise the func-
tions (29) and(30). As outlined in Huber and Tsakmaki6], for
keeping the number of necessary simulations small when training
neural networks, the parametersky/E; andE;/E} have to be
chosen randomly from the given intervals in order to form the
training and test patterns. For the purpose of the present study,

Fig. 6
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Fig. 5 Examples of finite element simulations for EF =200
GPa, k,=500 MPa, E;=20 GPa, h,=4h; Fig. 7 The effect of wand E;/E} on II; for IIT =const
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results suggest to assurilg andIl; as a function ofI§ which is
the motivation for Eqs(34), (35). In what follows, a neural net-
work will be developed on the basis (84) and(35), which will
represent the solution of the inverse problem, iveas a function
of I17 , II,, andIl;.

4  Training of the Neural Networks

Artificial neural networks represent a qualified tool for solving
complex inverse problems in computational mechanics. An over-
view about some relevant applications is given by Yagawa and

Okuda[22] and Sumpter and Noif23]. A neural network con- 0.85 [ | |

sists of neurons connected with links to a highly parallel structure. 1.0 1.1 1.2 1.3 1.4
Each neuron possesses a local memory and can carry out localized Nsl]

information processing operations. In general, each neuron has

multiple inputs and a single output value to mimic the biological Fig. 9 Correlation of I, and I,

brain neuron.
According to the neural network method so-called training pat-
terns have to be presented to the network. These consist of the yi=v. (42)

input valuesk; and the related desired output valuks The error . . .
P ' P b The neural network consists of three input neurons, two hidden

e=d -y, (39) layers with three and two neurons, respectively, and one output
for each pattern can be computed from the actual ougpsee Ne€Uron. Forll} <4 data have been established, from which 375
Fig. 9. training patterns and 38 test patterns were generated, the test pat-

Using a backpropagation algorithm, the synaptic weighs terns are chosen randomly from the database. These test patterns

which represent the links between the neurons are adjusted ap§& ot presented to the neural network during training and can be
priately. This way, the error of the output values is minimized angsed to check the capability of the trained network for unseen
the network has been taught the relation between input and outpaterns.
values. The mean error for all patterns and outputs is given by After 3000 training epochs the MSE value reached 806*
and 9.010 * for training and test patterns, respectively. The val-
MSE::i 12 2 (e(M)2 (40) ues ofv identified from the finite element data are plotted against
NLS 4 b the exact valuew in Fig. 10 for training and test patterns. It can

. . be seen, that it is possible to determinenly with a comparably
wheren is the pattern numbeN is the number of patterns, ahd large scatter.
is the number of output neurons. The neural network simulations
are carried out using the SNNS cod]. The relevant theory of 4.2 Two Unloadings(Set 2. The identification can be im-
backpropagation and preparation of the data in a form approprigw@ved by adding independent information to the input data of the
for our purposes is described, e.g.[I5,16. neural network. This can be done, e.g., by using an additional
. . . unloading. To this end, to each unloading at a ddptha further
4.1 One Unloading(Set ). Towards determining the Pois- unloadingh, , is considered having the d9pf|ﬁf|ht2==2flf|ht .

. . s ,
son ratiov, we regard |n(34),_(35), thf guaptltlesﬂ ' HZ’. and Thus a new neural network, referred to as Set 2, has been trained,
I1; to be known. More specificallfl; is given by material pa- for which the input data, for given material data, are

rameters, whilell, and I1; are regarded to be determined by ' '

exploiting a loading and an unloading. Thus, we have two equa-(Xy, . .. Xs) ::(1‘[’1‘|,1t l,1'I§|ht 1’H§|ht l,1'I§|ht 2,1'[§‘|r1t ). (43)
tions with two unknowns %,E1/E¥). However, these equations ’ ' ’ ' ’
can only be inverted in a satisfactory mannerllif andIl; are
linear independent. By plotting all finite element resultsIbf
againstll; one can observe a strong correlation between the

Note that the depthis, ;,h; , together with the material data form
the basis for a pattern. This neural network consists of five input
gurons, two hidden layers with four and three neurons, respec-
two quantities(see Fig. 9, which has the pointl.0,1.0 as origin 1vely: and one output neutor. Aghag‘hiw tf‘L”'“A?tpa“hems and 38
for »—0.5 andIl? —1 (cf. Figs. 6,7. test patterns were generated wit 1 |ht,1\ . After the same

From the correlation betwedii, andI1; arises a lack of infor- duration of 3000 epochs an MSE value of 9.0 for training
mation which makes difficult to invert the problem numericallyand 1.210™* for test patterns was achieved. The reidentification
This can be shown by training a neural network, denoted as Set 1,
using the input and output definition

0.5~
(X11X21X3)::(H;‘: ,Hz,Hg), (41) .
+  Training 4
— o Test
0.4 es ;
i
0.3 i EE T
N s
0.2 L i %
0.1
0.0 T T T T
0.0 0.1 0.2 0.3 0.4 05
vl
Fig. 8 Sketch of a multilayer feed forward neural net Fig. 10 Identification of w» on the basis of one unloading
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0.5 inverse function appropriately in order to decrease the sensitivity
+ Training + corresponding to the onset of plastic yield and thus to make the
0.4 | ° Test i method more suitable to experiments. The development of such an
7 inverse function is addressed [ig5].
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1 Introduction - hy h 0.8 ko \ 2 5
In a previous papefsee Huber and Tsakmak[4,]), it has been ! '_h;* CR\TTEF) ®)
shown, that the Poisson’s ratio can be identified from spherical )
indentation, provided the depth is known where plastic yield oc- h* =h,| -rlo &Tﬁ ©6)
curs for first time. To this end, the dimensionless quantities y T ylv=03 TUEF)
and1ls, (Throughout the paper use is made of the notation introduced in
p2/3 [1]). The hardening properties are represented by two dimension-
H2:_m , (1) less quantitied]} andE;/E} . The parameteE is the tangent
h modulus related to a linear isotropic hardening rule Efids the
m* reduced modulus, which is composed of the elastic properties of
H3:F’ (2) the specimen and the indenter
1 12 1-07
have been introducd@f. Fig. 1). Here,P, is the maximum load at § “TE * E @

the depthh,, where the indenter is unloaded.is defined as the _ _ _

slope on thén- P-graph for elastic loading (@h<h,), while m* Also,_the radius of the |nder_1ter_ is denoted_libyand ko represents

denotes the slope on tiie P-graph during elastic unloading afterthe yield stress at the beginning of plastic flow. In the case of

loading until (h,,P,). Note that in the elastic regimid,=1 and nonlinear hardening, the functiofk, andIl; have to be extended

M;=1. by additional dimensionless hardening parameters. However, as it
It has been shown ifl], that IT, and IT; are functions of will be shown later, for the purpose of our paper it suffices to

geometry, Poisson’s ratie, loading history, and the hardeningmodel the hardening response by a linear hardening rule.

properties We recall that some kind of correlation betweHn andIl;
exists, which does not allow to invert, with sufficiently accuracy,
Et the problem with respect te by using neural networks and only
HZ_HZ(Hl e g) () one unloading, even Pﬂ; andm are supposed to be given. How-

ever, v can be determined by using neural networks with high
_ E; accuracy under the same suppositions, when at least two unload-

H3=H3(H’{ 1/—*) (4) ings are used at different depths. The inversion of this problem

Ef has been realized ifl] by employing a neural network, denoted

as Set 2. Such a neural network can be trained by using finite

where element simulations and is able to approximate a pointwise given

function. During training, the neural network learns the relation
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  phetween input data and the desired Output data. In our case, the

MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED . .
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar.mput data are represented by the quant'Mv I, and 113,

26, 1999; final revision, Nov. 1, 2000. Associate Editor: K. T. Ramesh. Discussiothile v is the desired output value. For the numerical simulations,

on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depgrtand E~/E* have been chosen randomly from the intervals
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-479 T

-3 101 ; .
and will be accepted until four months after final publication of the paper itself in trize,0-1|0-43 and[10°°,10 7], respectively. Note, that the location
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17 €{1.5,2.9. . .,8.0}. For more details about the finite element
simulations and the training of the neural networks [sde

The present paper deals with the extention of the method for
identifying v for values ofm and h; which are not explicitly
given and so to make the method more suitable to experime
Following [1], we consider unloadings between the depths
>h;‘ andh, ,>h, ;. The loading respong@(h) is regarded to be
known for O<h=<h,, and the unloading response* (h,) is re-
garded to be known foh, ;<h;=<h,,, both in form of discrete
finite element results.

In Section 2, the value ofm will be determined by a neural

Fig. 2 Accuracy of the identified slope ~ my4

W linear interpolating the dat®?%(h), which are given in dis-
crete form, since the dat(h) are discrete. The reason for using

linear interpolated loading da®,(h;) in (8) arises from the fact
that the neural network for determinimgis not sensitive to these
data.

The output value is defined by the dimensionless quantity

network, which uses data of the loading respoRgg) only. In he 1
Section 3 two neural networks will be developed, which allow to y==mﬁpzl ) 9)
t,

assign to the discrete loading and unloading dBtéh) and ,
213

m* (h,) continuous distribution®|(h) and i* (h,). Neural net- where the slopeP;7h;; acts as an estimate of in order to
works represent smooth functions and are able to ignore the sdatnimize the range of values for. For all training patterng

ter in the input data. Thus, the approximated values are physicatyf 0.99617,1.2820P Note, that valueg<1 are theoretically not
meaningful and free of numerical or experimental scatter. As tif@ssible and reflect the numerical error of the finite element simu-
transition from pure elastic to elastic plastic deformation ikation. The exact value of the slopeis calculated analytically by
smooth the determination of the yield deptj or, which is the 4 213

same, oih;‘ ::hy‘pzo_3 is by no means an easy task. To solve this m=(§Ef \/ﬁ) . (10)
problem we will utilize two different neural networks. The first

one is an extended version of Set 2 introducedlihand has a The creation of all pattern@ee[1]) is based or(10), so that the
high sensitivity tol1§ in the vicinity of h; (cf. Fig. 12 in[1]). In neu_ral networl_< learns to ign_ore scatter due to numerical errors. In
order to avoid the difficulty to determineon the basis oh* , a addition, the fit of the data is avoided, which would be a further

new concept will be followed here. The hypothesis is that foUrce of uncertainties.

should be possible to train a second neural network, referred to ad Ne neural l?etwo.rk coc??llqsts of nine |nputthneltjron|§3d(c)jne (lautput
Set 3, which is almost insensitive 1@} in the vicinity of h;‘ ,heuron as well as six and threeé neurons in the two hidden 1ayers.

) e T~ : ) After 2000 epochs, the 407 training and 43 test patterns reached
Then, the |dent|f|ed1y-v-fjls_trlbutlonsgcf. Secthn if.z i1 of  4n MSE value of 9.710-¢ and 6.5 109, respectively. The quick
both neural networks will intersect in the poinby(,») where training and the very low MSE values indicate an excellent deter-
simultaneously the identification error vanishes. Finally, Sectionriination ofm by the neural network. This is proved by plotting

deals with the verification Of the method deV.e|Oped. It W|” b@he identified Va|uemid against the ana|ytica| values given by
shown that the results are insensitive to nonlinear hardening @9) in Fig. 2.

well as to the location of the unloadings.

2 Determination of m 3 Neural Networks for the Loading Data and the
In order to determinen, without knowingh, , a neural network Slopes During Elastic Unloadings
will be used, were the input data are restricted to values of the
loading response at different depths.
The input definition consists of a sequence of dimensionle

In this section, two neural networks are provided, which will be
ged to prepare the input data for identifyingNVhen determining
e value ofv in Section 4, the used neural networks will be

load ratios . sensitive with respect to the input loading data as well as the input
P\(h;) 2 i ) data concerningn®. In this case it has been proved to be useful to
EUPhy) i::ﬂ)hhl' i=1...9, ®) work with Pi(h) and m*(h,) as input data. The distributions

P,(h) andm* (h,) are smooth and are obtained by approximating

whereh, ;> hj is the depth at which the first unloading is availij, " mathematical sensevia neural networks the discrete data
able. When identifying the value of from experimental data the P,(h) andm* (h,)

yield depth h; is not supposed to be known. Therefore, when _

training the network, the depth,; is chosen randomly in the 3.1 Determination of PZ%. In establishing the distribution
interval hy ; € [1.5h],4.0hy ] for all patterns. For the purposes ofp?3(h) the input definitions in the neural network, in analogy to
this section it suffices to determine the input loading d&id;) the last section, read
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Fig. 3 Comparison of the P,(h) distribution with the ~ P,(h) fi-  Fig. 4 Comparison of the smooth  ri* (h)-distribution with the
nite element method (FEM) data m*(h,) finite element method (FEM) data
Py(h)|%® i ) 3.810 © and 4.510 8 for 2805 training and 258 test patterns,
=By hi=7ghe, 1=1...9, (11) respectively. Figure 4 demonstrates the capabilities of the neural

network used. The minimization of the numerical scatter by the
h filtering of the neural network is visible at those points where the
X10 = (12)  finite element results deviate from the continuous line.

wherehe[0h;] de_notes that erth at which th_e Ioad_ value is
needed. The maximum depth is allowed to be in the interval 4 Identification of » and h;‘

h,e[1.5n7,8.0h]]. The output definition is
- o3 The neural networks Set 1 and Set 2[ii] are based on the

Pi(h) | "7 hy assumption that the yield depth is known explicitly. However, the
= W h onset of plastic yield cannot be determined with the necessary
. ) ) .. accuracy from the loading data since the transition from pure elas-
Again, due to the choice of, the range of possible values is in a;c 1o elastic plastic deformation is not marked. In order to avoid
small intervaly [0.984,1.287. This allows an approximation gych difficulties, a further neural network will be created. Here, in
with a very high accuracy. The neural network consists of tefpntrast to Set 1 and Set 2, the input data of this neural network,

input neurons, one output neuron as well as eight and four neureRsoted as Set 3, will not make use explicitly from the value of
in the first and second hidden layer, respectively. The MSE valgp:

after 2000 epochs was $00 * and 4.810° for 892 training ~ *
and 92 test patterns, respectively. An example of the very good4.1 Retraining of Set 2. The patterns of Set 2 ifil] were
approximation is shown in Fig. 3. restricted to the exact locations of the unloadings available from
o - " _ the finite element simulations. By using the networks of Section 3,
3.2 Determination of m*. For determining the unloading the unloading data are available at any depth between the first and
datam* (h,), we defineh, ; andh, , to be the depths at which the |ast unloading. Thus, it is convenient to retrain the network Set 2
first and the last unloading is carried out, respectively. The corrgith a random depthh, , in order to achieve best possible gener-
sponding unloading slopes are denoted rby:=m*(h, ;) and alization. Also, in order to make the neural network more robust
mj :=m* (h,,). Again, the input values are given by equidistanfor practical problems, an additional third unloading is used be-
linear interpolation of the numerical data tween the two original unloadings. The so obtained neural net-
work for determining the value of represents the first neural

(13)

m*(hi)*mf i . network, mentioned in the Introduction 1, which indicates a high
Xjz=————5—, hj=r=(hi,—hy)+h, i=1...9, % - .
m3 —mj 10" * * sensitivity toll7 in the vicinity of hy .
(14) The modified input definition is then
h,—h X, :=I1% 17
t— N1 (15) 1 1|htv1 17)

X10=p -
hi2a—hey

Here,m* (h;) represent the slopes obtained by linear interpolating
the discrete values* (h;), andh,e[h, ;,h; ;] denotes that depth
at which the value ofm* is needed. The maximum depih, for
the training patterns is in the intervhl ,e [4hy ,8h ] while the
minimum depthh, ; is always given by the location of the first
unloading. The output is defined by

._Fn* (ht) - mf

m; —my

XZ PR X4::H2|h‘, ht:l.(ht’l, 1.5'-“'1, 2.mt’l, (18)

X5 - .X7:=H3|ht, ht=l.0’]ty1, 1.5'“’1, 2.0’]t11, (19)
whereh, , is allowed to be in the intervdl, ; e [1.5h7,4.0h7].

The neural network consists now of seven input neurons, two
hidden layers with five and three neurons, respectively, and one
output neuron. Now, 449 training patterns and 46 test patterns
were generated. After a duration of 3000 epochs a MSE value of
1.0-10 * and 6.810 ° has been achieved for training and test
patterns, respectively. Here, the test patterns display the double
The neural network consists of ten input neurons, one output nguecision compared tid ] indicating the minimization of the scat-
ron as well as eight and four neurons in the first and secorter by the filtering and the increased reliability due to the third
hidden layer, respectively. The MSE value after 2000 epochs waisloading.

(16)
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4.2 Training of Set 3. We recall(see end of Section 3 in 05y~
[1]) that » can be thought of as a function bF; , II,, 113, i.e, N AN ——- Set2
N T
v=g(IT% I,,115) (20) s TN St
or v
0.3 S =TT
v—g(I15 11, ,115) = f(I1} ,11,,115,v)=0. (21) = \ N
\ N
In view of (3)—(5), the latter becomes I::‘O_z_ AN i
~N
h, ~ [ h Er\ ~ [h E; N
f(_ ’HZ(_ = ’H3 hy = R :0 .\'\A
hy v=03 hy v=03 EF hy v=0.3 EF 0.1 -
(22)
or 0.0 T ,
he ~ [ h, Er\ = [ h, E, 05 075 10 1.25 1.5
f(—,Hz(—,v,— Jg| — v, = |, v|=0. (23) by /-]
hy oy Ty R . .
Now, our aim is to obtain from Eq23) a relation of the form Flg_. 5 Slm_ultaneous identification of Poisson’s ratio vand hj
N as intersection of Set 2 and Set 3
v= §(h§), (24)
whereﬂ’y* is defined below. To this end we first consider a se-
quence of indentation depths Set 3 displays an insensitivity dnin the vicinity of h* , which is
h j+1 h _— ) visible as a plateau. From the intersection of the cuﬁ(én;) and
R (25) v(hy), the values ofv and the value oh} can be determined

N simultaneously.
h1:=2hy . (26) In the following, this identification method will be applied to all
Theoretically, it suffices to consider E@3), e.g., ath,=h, , patterns in order to give an impression about the theoretical ap-
he=hyo= ght,l and h,=h, ;= 2h, ; in order to eliminateE /E* proach. Next, the sensitivity of the results will be checked with

. . respect to different nonlinear hardening rules as well as different
andh§ and so, by using a neural network, to obtain the value of P 9

. . X unloading locations.
for the given valueh, ;. However, in order to increase the accu-

racy of the neural network developed, Eg3) has been exploited 5.1 Linear Hardening. Using the identification method de-
atn=5 indentation depthb, ;, h;,=3/2h; 1, ... h 5=3h;. scribed above, the values pfandhy are determined for all avail-
Evidently, one may use this approach faor,e[2h] —¢,2h7  able finite element simulations including the test patte(sese
+ €], wheree is a small positive real number, and so to establislfigs. 6 and Y. Since the test patterns do not coincide for the
by using an appropriately trained neural network, referred to different neural networks, training and test patterns are not distin-
Set 3, a function of the form guished in the graphs. From the 94 examples displayed in Fig. 6 a
— high accuracy can be observed, where 95 percent of the results
v=w(hy. @7) possess an error less than 5 percent. The successful identification
On the other hand, one may interpret, on the basis of(E8), a is confirmed as well by the excellent accuracy of the identlﬁ@d

variation of h; as a variation ofh} . Thus, by settingh} Vvalues, displayed in Fig. 7.

=hy/2in (27), we have 5.2 Nonlinear Hardening. So far the identification method
v=p(2h*)=5(h*) (28) is developed for the case of a linear hardening response. However,
3 y yo since the indentation depths required by the method are of the
with v in (24) and (28) being understood as the same function. order of the yield depth it is natural to expect that, when deter-
In training Set 3, one has to evaluate, for given material dataining the value ofv for a material with nonlinear hardening,
E;/E} , the values ofl, andIl; at prescribed,. These values only the slope of the hardening response at the beginning of plas-
are obtained from finite element results by using Eds.(2) and
represent the input data for Set 3, the output quantity being
Note that in a training pattern the numberldg-inputs must not

necessarily be equal to the number of tHg-inputs. Thus the 05
definitions, which produced the best results, are for giZghE”
X .. Xg=Illy _y, h=080% 1005 155,  (29) 0.4

Xq.. Xg=Il|p _y, h=2h% 30, . %, (30

0.3

Vident [-]

X9 .. 'X13:=H3‘h[=h1 h=2FI; ,3?]; y e ,é"‘]; . (31)

The 443 training and 48 test patterns were generated by using five
randomly chosen valuels;‘ for each finite element simulation. 0.2
After 45,000 epochs an MSE value of 919 ° for training and

8.9-10 ® for test patterns has been achieved.

0.1+ T T T
5 Results and Discussion 0.1 0.2 3[3] 0.4 05
The characteristic of Set 3 is shown in Fig. 5 for the same
example as depicted in Fig. 12[ih]. Actually, the neural network Fig. 6 Accuracy of the identified Poisson’s ration v
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rules displayed in Fig. 8

tic yield will be important. To demonstrate this, some finite ele-

ment simulations have been carried out, where a hardening rulgar hardening or the location of the load increments. This robust-
SR _ . ness is necessary for the following identification sintis needed
k=(y=B(k=ko))s (32) for making other quantities non-dimensional.

is assumed. In Eq32) k denotes the isotropic hardening variable. Next, the eight verification examples will be used to discuss the

For more details on the constitutive equations see Huber
Tsakmakig2,3] and the literature cited there. Note, tHap) re-
duces to linear hardening fg8=0 and y=E;. For >0, the
initial slope of the hardening rule is given bywhile ky+ v/ is
the limit of isotropic hardening.

asehsitivity of the interpolation networks as it has been indicated in
Section 3. To this end, the neural network Set 3 has been trained
by three different data sets. In the first cdsk), the loading data
as well as the unloading data are created by linear interpolation. In
the second casé.N), the loading data have been prepared by

In Fig. 8 one-dimensional strain-stress distributions are dinear interpolation while the unloading data have been deter-

played forE=210 GPa,»=0.3, ko=250 MPa, andy=10 GPa.

mined by using a neural networlsee Section 3)2 In the third

Four different hardening rules are considered, where the hardease (NN), the loading data as well as the unloading data are

ing limit is successively decreased from infinftimear hardening

determined by neural networksee Section 3.1, 312From each

to 5 MPa. The resulting depth-load trajectories are displayed dtatabase a different neural network Set 3 has been trained under

Fig. 9.

the same conditions, where the training of Set 3 for ¢abé) is

In the depth range df,/hy <8, considered, only the depth-loaddescribed in Section 4.2.

trajectory fory/8=5 MPa deviates slightly from the other trajec- The identified values ohj and v for all eight verification ex-
tories with higher hardening amount. The displayed depth-loadnples are given in Table 1. These results for dafd) show
trajectories are generated by using the same unloading locatitmat there is only a very weak but systematic effect for increasing
as for all training patterns, i.eht/h;’ =1.5,2.0...,8.0 and are nonlinearity on the identified value of From linear hardening to
denoted by Type 1. Another type of depth-load trajectories, dalmost ideal plasticity, the determined Poisson’s ratio increases by
noted as Type 2 has been generated with the locations of ﬁt@oroximately 0.5 percent. No effect can be observed in relation
unloadings ath/h%=1.75,2.25. ..,7.75. By using the Type 2 0 the unloading locations. ,

samples, the approximation capabilities of the neural networks!f the loading response is interpolated lin¢aN), the values of
can be checked with respect to the location of the unloadings. ¥ for Type 1 are slightly higher while for Type 2 they are slightly

First it can be seen from Table 1, that the valuaroi identi-

smaller. Here we find a remarkable difference between Type 1

fied with an excellent accuracy and is not affected by the nonligd Type 2 exampleg.e., an effect to the location of the unload-

ings), but no significant effect with respect to nonlinear hardening.

1200
E, = 10 GPa (iinear) Table 1 Identification of additional verification patterns. Four
1000 ;'_ 500 ;P'near different model-materials according to Fig. 8 have been consid-
i = a ered, which differ with respect to the hardening response. The
é— I8 =50 MPa four model-materials exhibit common elasticity data, onset of
800 —*— Y/f=5MPa plastic yield and slope of the hardening response at onset of
v plastic yielding: m=26.65 N um~", h}=1.48 um, »=0.3.
= 600
o Set 3LL) Set 3LN) Set 3NN)
400 B m h; v h; v h; v
sassessssassases: Type [-] INum [um] 1 fm) 7] fum] 17
200 1 0 2661 1.77 0175 1.49 0303 149 0.297
1 20 26.60 1.64 0.235 1.49 0.302 149 0.301
0 1 200 26.60 149 0.311 148 0.312 1.48 0.307
' ' ' ’ 1 2000 2661 1.46 0.320 146 0.319 147 0.315
0 2 4 8 8 10 2 0 2661 162 0241 153 0.284 150 0.297
€ [%] 2 20 26.61 1.63 0.238 153 0.286 1.49 0.300
2 200 26.61 1.50 0.302 1.52 0.292 1.49 0.306
Fig. 8 Stress-strain curves for linear hardening and different 2 2000 26.62 143 0.334 150 0.303 1.49 0.311

nonlinear hardening rules
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For linear interpolation of the loading as well as the unloadingl errors, like, e.g., uncertainty of zero depth, roughness, machine
data(LL) a strong effect of the nonlinear hardening can be olwompliance, or a nonideal spherical indenter may occur. There-
served, so that the determined valuevahcreases for increasing fore, further difficulties may appear, when dealing with experi-

nonlinearity. mental data. In this sense the present paper should be regarded as
) the first step towards determining the Poisson’s ratio for real
6 Conclusions materials.

In the present paper a method for identifying the Poisson’s ratio
is proposed, where no information about the yield depth is supcknowledgments
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The problem of a large isotropic plate with a circular hole or rigid circular inclusion is
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an arbitrary bending field. By using Reissner’s plate theory, a general solution, in terms
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Introduction The case of an infinite plate with a rigid circular inclusion sub-

. . . Jjected to uniaxial bending was complimented by Hirg&0] by
The problem of the bending stress concentration for a cwcul{:j\ ing Reissner's plate theory.

hole in a large, thin isotropic plate subjected to a bending stres . . )

. 3 ! ; 2 - he purpose of the present work is to generalize taritrary

ggfdmasaggccuﬁ%?i ctz t?éﬂgﬁwwE::seesco\rlllsi{ﬂgLetdretfheerelr{lrc]:f);lc?lt gnding fieldthe previous research on the stress concentration
9 Y 9 : ctor for large, shear deformable isotropic plates containing a

work of Bickley, the uniaxial bending problem was reconsidere ircular hole or rigid inclusion, by using Reissner’s plate theory.

by Lekhnitskii [2] and the cylindrical bending problem was re- . . -
worked by Goodief3]. They obtained explicit expressions for theCompansons are made with classical plate theory, three-

X . ' dimensional elasticity theory by Albld&1], Cheng’s([8]) results,
stress concentration factét. Goodier also first solved the pure ) ) ;
twisting problem. The research was generalized by Béftto Chen and Archer'¢[9]) results, and Dumont'§{12]) experimen-

obtain a general equation fét as tal result.

Governing Differential Equations

B €)) Reissnef13] derived the expressions for stress coupleand
transverse shear stress resulta@tfor a uniform isotropic shear

where v is Poisson’s ratio an®=M, /M, is defined to be the ggigrsm(ag)leazlate(wnh absence of surface loath polar coordi-

ratio of principal bending moments. For uniaxial bending, cylin-

drical bending, pure twisting, and balanced biaxial bendiBg, W, Weel 2 ([Xe X

=0, », —1, 1, respectively. M= - D( Wty Vr—z) (T— r—z) (2a)
Goland[5] was the first to consider the effect of a rigid circular

inclusion on plate bending. He considered the cases of uniaxial W, Wl 2 (Xea X

bending, cylindrical bending, and pure twisting. My=— D( Vot r—z) v (T— r—z) (2b)
The importance of transverse shear deformation effects on

stress concentration factor was first recognized by Reid&jer

He considered the problem of an infinite plate with a circular hole Mip=— (1~ V)D(

and subjected to uniaxial bending and pure twisting by allowing

three boundary conditions along an edge, taking into account the )

effect of transverse shear deformation, and assuming that bending Q=—D(Vw),+ -, (2d)

stresses are distributed linearly over the thickness of the plate. The

case of an infinite shear deformable plate with a circular hole and (Vzm)vg

a rigid circular inclusion subjected to cylindrical bending was Qpy=—D—F—"xn (2¢)

treated in his later pap€f7]). Cheng[8] considered the problem

of a large plate with a circular hole subjected to uniaxial bending 2% xy,

by means of his refined plate theory, which was deduced from b=—w,+ m T

three-dimensional elasticity and took into account the shear defor-

mation. Chen and Archd®] reconsidered this problem by using @ g 2772

their 12-order thick plate theory. bo=—— D(1—n) X" (29)

5+3v 1-v

_—+_
K 3+v  3+vw

)\2

W W 2 X X606
= 2 ) @

: (2f)
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with D and S being bending stiffness and transverse shear flex-
ibility, w the normal deflection, anes and y being solutions of

differential equations
DV4w=0, 4
VZxy—\2x=0. (5)

For three-dimensionally homogeneous plates, the fa@01S
and\ are

~ ER?
D= 12(1—v?)° (62)
B 12(1+w)
S=—gp (6b)
A= g) (6¢c)

whereE is the Young’s modulus.

Boundary Conditions

There are two kinds of boundaries involved in this problery,, d,, B,, D,
The conditions at infinity are arbitrary biaxial bending moments,

i.e., finite M, and Q,=0 at =0 deg and finiteM,=BM, and

Az C
X(r,0):A0|0()\r)+C0K0()\r)+{{B le()\r)+(D }Kz()\r):|
2 2

cog260)
X[ sin(20))'

It is noted that the coefficients,, d;, A, A,(m>2), B,(m
#2), Cq, Cpy(m>2), andD(m##2) must vanish in order to
satisfy the far-distance boundary conditions.

Substitution of Eqs(12) and(13) into boundary condition, Egs.
(7), yieldsAp=A,=B,=0, and

(13)

_ M,a®(1+B)
“TTaD (140 (142)
e M,a? (1-B) "
5 4D (1-v)’ (140)

Solution for Plate With a Circular Hole
At boundaryr =a, the conditions are listed as follows:

Qy=0 at#=m/2. Then converting from rectangular Cartesian co-

ordinates to plane polar coordinates yields

Mr:%[(ﬁs)ﬂl—mcoszm];

)
My .
M, p=— 7(1—5)5”’(20}; Q,=0.
The boundary conditions at=a for a hole are
M;=0, M,,=0, Q,=0 (8
and for a rigid inclusion are
w=0, ¢=0, ¢,=0. 9)

Solution

The solution of Eq(4) for an infinite plate with a circular hole

Boundary
cog260) sin(26) 1 Conditions  Eq.
A2, C2 C2 |\/|r=0 (1&)
Az, Cy dy, dg, By, Dy A, Co M;»=0 (150)
ds, Bz, Dy Az, C Q=0 (1%)
C,, d,, d4, andD, can be solved as
8 4 Kyp)
N =v+p+—+— 16
PR T LK) (18)
. M,@*(1+B) 17
27720 (1-»)’ (172)
M,a% N_;(1+B)
4=~ 7p Na(1— ) (170)
g M.a®1-B 17
“STD NG (17c)
2M 1-B
D, — —x (17B) (17d)

27 Ky(w) Ng

or inclusion and subjected to generalized bending at great d\i/§here,u,=)\a= J10a/h.
tances from the hole or inclusion has the same form as for theThe nonzero coefficients in solutions, Eqs2) and(13), for a

analogous problem of a thin plate with a h¢ert [4]):
+ ~ + r2| '
a) %2 Tz
4 2 2
dl? +d2r—2+d3¥+d4

w(r,0)=c,+cy1In

+

cog26). (10)

shear deformable plate with a circular hole age c;, d,, ds,
d4, Dy, as in Egs.(14) and (17), and c;, which can be any
constant. Therefore the solution fg(r, 8) can be further simpli-
fied as

The general solution fo can be written agAbramovich and Solution for Plate With a Rigid Inclusion

Stegun[14])

©

X(1,0)= 2, {[Anl (A1) +CrKpn(Ar)]cog ma)
m=0

+[ Bl m(Ar)+DpKn(Ar)]sin(mé)} (11)

wherel,, andK, are the first and second kinds of the modified

Bessel functions of ordan.

In conjunction with the far-distance boundary conditions, Eq.

(7), solutions forw(r,#) and x(r, ) have the form of

r r2 2 2

=c;+ —|4+cy—=+|dy—> +d3—+
w(r,0)=c, czln(a) C3a2 (dzr2 d3a2 d, |cog26)
(12)

Journal of Applied Mechanics

x(r,0)=DyK,(Ar)sin(20). (18)
Boundary
cogq26) sin(26) 1 Conditions  Eq.
d2, d4 Cl W:0 (1%)
dy, d4, By, D, Az, Cy C, $=0  (1%)
Ay, C, dy, d4, By, Dy Aq, Cq ¢y=0 (1%)
Cq, Cy, dy, ds, andD, can be solved as

8 16 Kz(M))
P,=v—1+a|l—+—7— 20
qu M3 KZ(M) ( )

M,a? (1+B

_Ma? (1+B) 212

©TID 11
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anz (1+B) - Taltl)ile) 1 b_Strtes(jstcongenFthLon égctors for an infinite plate (v
Com—— ———— = subjected to uniaxial bendin
=20 (1+) (210) ) 9

ah With a circular hole (B = 0)

M Xaz (1— B) Pl Exact | Present {Chen & Archer| Cheng
dy=——7 —"—; (21c) 0 - 3.0 3.0 3.0

4D (1-v)P_, 05| 2268 | 2242 2.264 2245
1 2.045 2.038 2.050 2.040
. M@*(1-B) 151 1.960 | 1.956 1.964 1.957
ST D P, (21d) 2 | 1914 | 1912 1918 |-1913
2.5 1.896 1.884 1.890 1.885
4M41—B) ® L%? lj@ - 1.769
= (219 Classical thin plate theory 1.769

2 pKy(w)P_y

The nonzero coefficients in solutions, E¢$2) and (13), for a
shear deformable plate with a rigid inclusion axe c,, c3, dj,
ds, d4, andD,, as in Egs(17) and(21). The solution fory(r, )
can be simplified to the same form as for the circular case in Egjate theory, Cheng'¢/8]) results, and Chen and Archerg9])

(18), but with a different value for coefficied, in Eq. (21e). results. By no means do the present results deviate from Reiss-
ner's ([ 7]) results since the expressions have been compared pre-
Stress Concentration FactorK viously to show the consistency. Slight differences between the

results appear in Table 1. Often in practice, a simple method of
solution, although only approximate, is preferable. Reissner’s
sixth-order theory is relatively practical, comparing with Chen

To determine the stress concentration factor, definedKby
=M nax/My, Egs.(12) and(13) are applied to obtain

T and Archer’'s 12-order theory, Cheng’s plate theory combining
Myl a, = _ fourth-order, second-order, and transcendental equations, or the
Ky= 2, = At2v(1-B)+ (14BN, (22a) most complicated one, three-dimensional elasticity.
My N3 Dumont [12] measured the stress concentration factor for an
_ B aluminum-alloy plate(with »=1/3), 55 inches square, 1.062
R= M:(a,0 — 2+2(1+2»)B—(1+B)N, (22b) inches thick, containing a circular hole 8 inches in diameter, and
My (1+v)P_,4 subjected to uniaxial bending loading, with a value of 1.85. By
with subscriptsH and R standing for hole and rigid inclusion, Méans of the present method, a stress concentration factor of
respectively. 1.878 is obtained, which is very close to the experimental result.

By taking B= », which corresponds to cylindrical bending, the AS @ consequence, Table 2 lists stress concentration factors for
stress concentration factors for plates with circular hole or rigiafious values of andB, for plates with a circular hole or a rigid

inclusion are inclusion.
2—2v
Ky=(1+B)| 1+ ; (23a)
N3
Ko=14 2v—2 23 Table 2 Stress concentration factors for an infinite plate with
R™ P_, (230)  a circular hole or rigid inclusion
. . . . , ah With a circular hole With a circular rigid inclusion
which agree with Eqsi20) and (28) in Reissner’s pape(r[_?]). s =0 T B0 v 1 T TE=0 v 1 1
By taking B=0 and Kj(u)=—Ky(u)—2/uKy(u) in Eq. 005 3.0 3.0 4.0 gg ;gg; égg; ;ﬁz gg
; : ) . 2135 2135 2270 ! . . . .
(220), one can obtain Hirsch’s resulsL0]). 1 1927 1927 1853 20 | 2418 2418 287 20
For u—o, we obtain 1.5 1.845 1845  1.691 2.0 2629 2629  3.258 2.0
2 1.803 1803  1.605 2.0 2749 2749 3498 20
5+3y 1—vp 25 1.776 1776 1552 2.0 2821 2821 3.642 20
Ky()= + B; (24a) @ 1.667  1.667 1333 2.0 3.0 30 4.0 2.0
v+3 v+3 v=1/4 | B=0 v -1 1 B=0 v -1 1
) 0 3.0 275 40 20 1527 1546 1455 16
_ 0.5 2242 2182 2485 20 2018 1913 2435 1.6
Kg(c)= 3+v—B(1+3y) (24b) 1 2038 2029 2076 2.0 2524 2293 3.448 16
R (1— V?) ' is 1956 1967 1911 2.0 2845 2534 4091 16
2 1912 1934 1823 2.0 3.038 2679 4477 1.6
; — 1 ) 25 1.884 1913 1769 2.0 3.158 2768 4715 1.6
By takingB=0, v, —1 in Eq.(24b), one can get Goland’s results " T760 18 153 20 | 3457 30 S35 e
(8D v =131 B=0 v 1 1_| B=0 v 1 1
For u—0, 0 30 2667 40 20 s L5 15 L5
0.5 2272 2182 2545 2.0 2033 1.855  2.566 1.5
1 2070 2047 2140 2.0 2607 2238 3715 15
i + E Ka(u) 0 (258) 1.5 1988 1992 1976 20 2986 2491 4472 15
MZ MS Ko( ) ' 2 1944 1963  1.888 2.0 3219 2646 4937 1.5
2 25 1916 1944 1833 2.0 3365 27435 5229 15
, ® 1.8 18667 1.6 2.0 3.75 3.0 6.0 L5
8 4 Kyw v=12| B=0 v a1 1 | B=0__v 1 1
2t o T2 (2%) 0 3.0 25 40 20 | 1467 14 16 1333
M m Ka(p) 0.5 2326  2.163 2652 2.0 2103 1718 2873 1333
. . . . 1 2128 2064 2257 2.0 2864 2,099 4395 1333
The introduction of Eqs(25) into Egs.(22) gives 15 | 2047 2023 2094 20 | 3415 2374 549 1333
2 2003 2.001 2005 2.0 3775 2554 6216 1333
Kny(0)=3-B; (26a) 25 1975 1988 1950 20 | 4010 2671 668 1333
® 1.857 1929 1714 2.0 4.667 3.0 8.0 1333
+v+B(1— v=-12| B=0 v -1 1 B=0 v -1 1
K(0)= 51/—(31}) (260) 0 3.0 35 4.0 2.0 2571 1857 1143 4.0
R 1+ 1)(3— ) 0.5 1792  1.688 1584 2.0 2836 2254  1.672 40
v v
1 1.603 1404 1206 2.0 3.047 2571 2,094 40

Now we are ready to make further comparisons. In Table 1,tl 15 }iég i;g‘; }ggi 20 ] 3% ggg gi;i s
stress concentration factors for a hole are compared with the ex 25 1482 1222 0963 20 | 3251 2877 2503 40

three-dimensional elastic analysis by Alblgkl], classical thin © 14 11 0.8 20 | 3333 30 2667 40
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Discussion and Conclusion author had the opportunity to discuss this problem prior to and

It is noted that the stress concentration for a thick plate withdaurlng his sabbatical leave at UCSD with Professor Reissner.

circular hole for large values of,, Eq. (24a), converges to the

result, Eq.(1), by means of classical thin plate theory. So does the

stress concentration factor for a thick plate with a circular rigiReferences
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Three-Dimensional Solutions of
Smart Functionally Graded Plates

A smart functionally graded plate consists of a plate made of a functionally gradient
material and actuators made of an active material. The active material, a layer or set of
patches, is bonded on the metal-rich surface of the functionally graded plate. When the
ceramic-rich surface of the substrate is subjected to thermomechanical loadings, dis-
Z.-Q. Cheng | o .
Vem. ASME placements, and stresses may be cqntrolled, and vibration amplitudes may be suppressed
by the actuators with supplied electric power. In the attempt towards a basic understand-
ing of the new type of smart structural system, this study considers a benchmark problem,
namely, the bending of a functionally graded rectangular plate with an attached piezo-
electric actuator. The transfer matrix and asymptotic expansion techniques are employed
to obtain a three-dimensional asymptotic solution. In numerical computations, the locally
effective material properties of the functionally gradient material are estimated by the
Mori-Tanaka scheme. The three-dimensional distributions of displacements and stresses
for different volume fractions of the ceramic and metallic constituents could serve as
benchmark results to assess approximate theories and numerical methods.
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1 Introduction nance. The FG structures are subjected to thermomechanical loads

Functionally gradient materialFGMs) are spatial composites and the integrated actuators are subjected to appropriate electric
- naily grad ) > SP P voltages, featuring functionality and thermoelectromechanical
within which material properties vary continuously and inhomo

. . i coupling.
geneously. This IS achieved _by gradually cha_mglr_lg the COMPOSIThare are two approaches to the bending solution of the bench-
tion of the constituent materials along one direction, us_ually theark problems of a laminated rectangular plate. PagasQ
thickness direction from one surface to another, to obtain Smog{fs geveloped exact solutions of simply supported laminated elas-
variation of material properties and optimum response t0 exi§fs piates by using the three-dimensional elasticity theory. Paga-
nally applled_ thermomechanical I_oads. Typically, functlonal_lym-s method simply treats the laminate layer by layer and then
graded materials are made from mixture of two or more materialpforces the interface continuity conditions. An alternative ap-
that are appropriate to achieve the desired objective. For exampigsach is the transfer matrix technique, in which the interfacial
thermal barrier structures are made of ceramic and metal to W"&bntinuity conditions are utilized. Both approaches have been ex-
stand high-temperature gradient environments while maintainifgéhded widely to the analyses of composite laminated plates and
the structural strength and fracture toughness. The ceramic cgRells for different materials and load®21-27, among othens
stituent of the material provides the high temperature resistandewever, the two approaches are only valid for laminated plates
due to its low thermal conductivity. The ductile metal constituenand shells, where the material properties are piecewise constant.
on the other hand, is placed where greater toughness is neede®agano’s method and the transfer matrix method are not valid
There have been several studies of microstructisee[1,2]) and for finding solutions of plate and shell problems with continuous
macrostructural(see [3—13] and references thergiraspects of inhomogeneity. A structure made of a FGM is a typical case.
FGMs. In addition, numerous symposia that are organized in rRsymptotic expansion is, instead, an efficient method for this kind
cent years attest to the increased interest in the topic. of problems. This method has seen its applications in single-layer
Structures with surface-mounted or embedded sensors and giezoelectric plateg[28,29) for a leading-order solution, lami-
tuators are referred to as smart structures. The type of structurated elastic, and piezoelectric platg80—39) for higher-order
system is capable of adapting or taking corrective action to charsplutions.
ing operating conditions. The passive structure in a smart systenin this paper, the transfer matrix formulation is presented in
is the load bearing part, whereas the active material part is @@mbination with the asymptotic expansion and is used for obtain-
perform the operations of sensing and actuation. The actuattit§ an asymptotic solution to a desired degree of numerical accu-
work to induce a counteractive static deformation or vibratiofRCy. The Mori-Tanaka scheme is used to give locally effective
suppression of the passive structieeg.,[14—18). material properties of the FGM[2,36]). Numerical results are
By integrating active materials onto the structures made Bfesented for smart FG rectangular plates, and the results may
FGMs, a smart functionally gradé&G) structural system is natu- Serve as a reference for checking the validity of approximate theo-
rally manifested. It makes possible that the FG structures can s and numerical methods.
actuated by properly applied electric voltage to the actuators to
ac_hieve desired shapes and suppress the amplitudes of Vibra_@”-Transfer Matrix Formulation
With the advent of the smart FG structural system, the operating

environments pose serious problem to the design and maintefigure 1 shows a FG plate attached on its bottom surface by a
piezoelectric actuator. A Cartesian coordinate sysBegX,X; is

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF used and the reference plang=0 is located at the bottom sur-
MECHANICAL ENGINEERS for publication in the ASME GURNAL oF AppLiEp  face Of the actuator. The top surfaces of the undeformed FG plate
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Decand the actuator lie at;=h andhg. Two thin-film conducting
6, 1999; final revision, May 2, 2000. Associate Editor: M.-J. Pindera. Discussion @lectrodes are p|aced’ r'especti\/e|y7 on the upper and lower sur-

the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme : : ; _
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and v%?ées of the actuator to carry an alternatlng forcmg electric poten

be accepted until four months after final publication of the paper itself in the ASMEal- For simplicity, negligible thickness of an electrode is
JOURNAL OF APPLIED MECHANICS. assumed.
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X3 Thus the dielectric moduli of the FGM are trivial to the deforma-
A tion of the actuated plate. This observation will be utilized later.
Equationg1) through(3) may be reformulated as the following
state-space equation:

h F] |0 A|[F] [0
|y _
AJE e
FG plate whered,=dl dx; (i=1,2,3), and
PZT actuator
Electrodes F=[uy u, 733 D3]", G=[713 723 Uz ¢]. (6)
The 4x4 operator matriced andB and 4X1 operator matrixC
X contain the in-plane differential operatarg andd,, and depend
on X3 only through the material moduli:
Fig. 1 Geometry of a smart FG plate
1/044 0 - {?l - kl(yl
0 1/044 - (92 - kl(92
Let 7 and S denote the symmetric stress and strain tendors, A= —J _J 0 o |
andE the electric displacement and the electric field vectotthe 1 2
mechanical displacement vectgrthe electric potential, and the —ki9; —kqd, 0 koA
increment in temperature from a stress-free reference configura-
tion. The governing equations of linear piezothermoelasticity, in —ksﬁi—c%&g (Ceg—Ka)d1dr —Kyqd1 —Ksgdq
the absence of body forces and electric charge density([ 40!
Y 9 y(eod B (Cos—Ks)drdo —Cee?i—Keds —Kudy —kKsdy
T — —0N- - ’
V'.-r=0, V.-D=0; 1) —ky0, — k40, €33Ko €3Ko
1 —ksdq —ksd; €3Kg  —CaKg
S=§[VU+(VU)T], E=-Vg, 2 )
whereV denotes the gradient operator in three dimensions. For a Ked1
piezoceramic material of class 6mm with poling in the _ kgdo
Xz-direction, the constitutive relations can be written in the matrix C= (€33N 33— €33P3)Ko
form ([41)) as (e33N33t CazPa)ko
fCi1 C»p C13 O 0 O 0 €31 ] WhereAE&f+ ag is the Laplace operator in two dimensions. The
i 7-11' Cir €1y Cis O 0 0 0 e in_-plang stresses and in-plane electric displacements, v_vhich are
oo discontinuous across the internal electrodexgt hg, are given
Tos Ci3 Ci3 g3 0 O O O €33 by
0O 0 O 0 O 0 0
723 Cas e1s 711= K3d1Uy + (K3 —2Cgg) doUp + K4 733t KsD3—Ke T,
T31 | = 0 O 0 0 C44 O els 0 O
T12 0 0 0 O 0 cg O 0 0 T22= (K3—2Cgg) d1U1 + K3dpUa+Ky733+ ksD3—KeT,
D
D,| | © 0 0 0 es 0 —ex 0 0 712= Coel DUy + 01U), ®)
D O O 0 615 O O O — €11 O
L3 Di=ky713—Kad1 0,
L€ €3 €3 0 0 O 0 0 —e€3l
TSy ] [ =\l Dy=ky7o3—Kado
S,, — N2 where
S33 _)\33 2
25,5 0 !t _&s S5
0 2 1 1 ’ 2 11
x| 28y [+| O |T, ©) C3z€33t €33 Cas Cag
2S 0
_ Eli 0 k3= C11~ (C3a€aa+ 2C19831€35— Cas€5y) Ko, ©)
B Ez F? k4= (Ci3€33t€31€33)Kg,  K5=(C13833— C33€31) Ko,
] L 3

With Ceg=(Cy1— C1)/2. Deformation of the actuator made of lead ~ K6= M 11~ (C13€331 €31€33) A 3o+ (C15833~ C35831) P3Ko.
zirconate titanatgPZT) is governed by the three sets of Egs, .
(1)—(3). They can also be used for the FG plate made of an inhg- Asymptotic Scheme

mogeneous isotropic material by setting The mechanical loading is specified by the tangential tractions
B 3 3 3 g:; , 9, and the normal pressur@g at the plate surfacez,
C11=Css,  C12=C13,  Cas=Cesr €117 €33, 4) =h,0. The electric loading is specified by applied electric poten-

tials Vg and V™ at the electrodex;=hg,0. The plate is also
subjected to a three-dimensional thermal Idado be separately
The nonzero elastic and dielectric moduli ) for a FGM are solved from a heat conduction problem. The thickness coordinate
functions ofxs. The dielectricity equation for the FGM, which isis scaled ag=x3/y by the small parametey=h/a, wherea is a
decoupled from the elastostatics, is not of interest in this papégypical in-plane dimension and varies from 0 toa as x3 goes

€3=€33=€15=0, p3z=0.
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from 0 toh. The interface between the FG plate and the actuatahere
is atz=ag=hg/y. The mechanical and thermal loads are then

scaled as UM -z, U
_ _ _ (n)_ (n)
T1dz—0= X1+ Tadz—0=X%Uz . Tad,—0=—x%03 . XM = Uz (2)02U3 ,
ol,-0=Xx?V", (10) UM+ (DYH(z— ag)
(15)
7'l3|z:a:)(2(:|:-L'—v TZS‘Z:aZXZq;x T33|z:a:_X3q;v g 0
S 0
¢loa = x?Ve. (11) HO =5 { QA q02 ~| ¢ | +QAQcs
3
The state space functioffisandG are expanded in terms of the V- 0
small thickness parametgras
+QAQB(XM+HM),
Fl < f(m .
6= in[gm} (12) with H®=0, 6=T/x and (D{")=D{"|,-: —D{"|,—._. Be-
n=0 cause of the internal conducting electrodeatg , the transverse
Denoting the integral operators electric displacement must be different on the two sides of the

electrode. In this case, the discontinuity in the transverse electric
displacement must be accommodated. In addition to the unknown
(DY), the basic unknowns are the components of the three me-
chanical displacements and the electric displacement at the bottom

Q(...)Ef (--)dz, 6(...);} (--)dz
0 0

ag surfacez=0 of the actuator:
QE("')EJ (---)dz, 13)
° U(ln)= U(ln)|z=o , U<2n)= U(zn)|z=0' Ué”)= U(sn)|z:01
and substituting the expansioh?) into Eq. (5), with the help of
Eq. (10), leads to Uy=DY"|,—o+. (16)
0 d;1 Sno These unknowns are to be determined such that the conditions
0 a5 o (11) are satisfied through E@l4). After some manipulation, this
gd9=| Lo g b=l Gen) | +QBFM+6,,QCH, gives
Us U}
0 V™ 8no Rf(M=5,,Y, a7
fM=XM4HM™  (n=0), (14) where

- 5k3f9§ - 6066‘95 Q(Ceg—ke)d1d,  —Qkgdr  —QKsdy
Q(ces—kg) 19,  —QCeeds—Qkads —Qkydy  —Qksds

R= % il = — : (18)
—QeKsdy —QeKsd> QeesKo  —QeCasKo
[

q*—q*—akgalﬂ only change the dielectricity solution for the material. The ther-

i = moelasticity solution for the FG plate will not change and nor will

Y= G2 —0z —QKed2f . (19) the piezothermoelasticity solution for the actuator. Itis clear from
— Q3+ 03 ta(dyd; +3d0; ) —QzkeA 6 (7), and (9);, when ag<z=<a, that Bys=—C3k,=0 as 5"
Ve—V™ —Qg(e33\ 33+ C33p3) Kol —o0, In addition,B,=B,;,=B3,=0 whenag<z=<a. It follows

that the term{D{")H (z—ag) involved inX™ has a trivial con-

The set of Eqs(17) of each order have four equations for fivetribution to QBX(™, and hence to the recurrence relatid®),.
unknownsU{"(i=1,2,3,4) and(D{"). The jump in the trans- The same is thatD{")H(z—ag) has a trivial contribution to Eq.
verse electric displacement across the internal electrodeat  (17) as a result ofRju=—Qgksdy, Ros=—Qgksdy, Rgs=
can be_ evaluated from a rigid dlelectnmty_equatlon fo_r the FGM, QzzksA andRy,= — QcCadKo. Consequently{Dgn)>H(z—aE)
which is de_couplt_ed from the th_err_noelastlc deformatlor_w problemay be dropped in Eq15); when takingegsGMHOO. This reduces
under consideration. Because it is a problem of no interest %_(17) to
practice, an important procedure is proposed to simplify(E@).

Physically, it is clear that the dielectric properties and the ther-

n)_— n
moelastic properties of the FGM are irrelevant to each other. Thus RX(M=8poY —RH', (20)
the dielectric moduli of the FGM have trivial contributions to the
thermoelastic deformation of the FG plate. As mentioned earlig¥here
this property may be utilized to advantage. By setting the trans- ~
verse dielectric modulus5S™ of the FGM to be infinite, it will XW=[u" Uy —ug U (21)
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EKB‘?%+6C66‘9§ Q(ks—Coe) 019, QzksdsA  Qeksd;

Q(Kz—Cgg) 19> 6C66(7§+6k307§ QzksdpA  Qeksds

R= = = = (22)
QZk3(71A szs(?zA szkaAZ (DEZkf_-‘,A
Qeksdy Qeksd; QezksA  QgCasKo
I
Note that the symmetric matrix operatéris a generalization of K— K1 v,
that for the bending of inhomogeneous elastic plates derived un- PR P (24)
der the Kirchhoff thin plate assumptiorifg42]). Details for the 2 " 1+4(1-V,) 2 M
numerical asymptotic procedure may be found3i]. 3k
The coefficient of thermal expansianis determined in terms of
4  Numerical Results the exact correspondence relatigb1])
The locally effective material properties of an FGM can be 1 1
predicted by micromechanical models such as the Mori-Tanaka _ KK
estimates, the self-consistent, generalized self-consistent or differ- @@ 1 (25)
ential schemes, or the cell method proposed by Abddd]. It ax—ay i_ i
should be noted that these average field schemes, except the cell K, K;

method, are originally developed for statistically homogeneous
aggregates based on a representative volume elefRéfif). In  HereV, denotes the volume fraction of the particulate phase. The
general, however, such a representative volume element may Mgti-Tanaka estimates on statistically homogeneous composites
be defined in a FGM. Assessment of these existing micromechatith spherical reinforcements coincide with the Hashin-Shtrikman
cal schemes has been given in, for exampld—47. upper and lower bounds on elastic mod{i§2]), when the stiffer
Consider a two-phase composite plate consisting of a matiase serves as a matrix or reinforcement of well-ordered com-
phase denoted by subscript 1 and a particulate phase denoted®$/tes. . . )
the subscript 2. The composite is reinforced by spherical particles |t is assumed that the volume fraction of the ceramic phase is of
randomly distributed in the plane of the plate. The locally effedhe power-law typeV.=[(x3—hg)/(h—hg)]". Figure 2 shows
tive bulk modulusk and shear modulug of the FGM are given the through-thickness variation for=0.2, 0.5, 1, 2, 5. Note that
by the Mori-Tanaka estimatef48,49) as the bottom surface of the FG plate is metal-rich and the top sur-
face is ceramic-rich. In actual service conditions, top zirconia sur-

K=Ky _ Va face provides a thermal barrier on Ni-based structural components
K,—Ky Ko—Kyq ' in aircraft engines. The constituent materials of the FG plate are
1+(1-Vy) Ko+ 2 taken to be nickel-based alloy, Mon@ONi-30Cu, and zirconia
17 3M1 with their material propertie§3,53,54)
KM Va Wl:”l(gKﬁ 8u1) Ky=227.24<10° N/m?,  K.=125.83<10° N/m?,
Rl vy "“2;‘: 6(Kyi+2u) m=65.55¢10° N/m?,  u.=58.077< 10° N/m?,
parm 23) arm=15X 10" /K, g=10X10"9/K,
The locally effective heat conductivity coefficiertis given by Km=25 W/mK, Ko=2.09 W/mK, (26)
(50D where the subscriptsn and ¢ stand for the metal and ceramic.

When Monel and zirconia serve as a matrix phase, respectively,
two sets of effective material moduli are obtained. It can be
proved that if the shear moduli of two constituents are identical,
the two sets of estimates on the effective material moKuli,

and« will be identical. Because the value of the shear modulus of
Monel is close to that of zirconia, the two sets of estimate&pn

p and a are very close to each other. In the following numerical
results Monel is chosen to serve as a matrix phase. The material of
the actuator is taken as PZT-5A with the following material prop-
erties([25]):

€11=99.201x 10° N/m?,  ¢;,=54.016< 10° N/m?,

X3/h

€13="50.778< 10° N/m?,
C33=86.856< 10° N/m?,  C4,=21.1x 10° N/m?,

e3=—7.209C/mM, e35=15.118C/M, e;s=12.322 C/m,

€1,=1.53<10 8 F/m, €33=1.5X10 8F/m,
N11=0.3314x 10° N/m?K, \33=0.326<10° N/m’K,
p3=7x10"*C/nPK,

Fig. 2 Through-the-thickness distribution of the ceramic
phase in the FG plate k11=1.8 W/mK, k33=1.8 W/mK. 27)
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Because the bottom surface of the FG plate is a metal surface, Up=Usg=Tp=0=T=0, atx,=0p,

the applied electric potential at the internal electrod¥gds-0. A

rectangular plate is considered in the following example. The onf)ér® are no boundary layer effects for the specific problem. A
fully three-dimensional solution may be generated to any desired

nonzero loads are specified as : X
R R degree of numerical accuracy in terms of
T gf VT ]=[T" g& V7] sinlyx;sinl,x,, 28 - )
[T" a3 1=[T7 as ] 1X1 SINTRX; (28) U U™ cosl 1%, sinl X,
my my (n) ST
I1:—1 ' Izz—; ) (29) XM= Uzm) = U? sinlyxy coslox;
a —U§ — U sinlxq sinl x,
where a quantity with a superimposed hat denotes the amplitude Uﬁ{‘) Uﬁ{” sinl;x; sinl,X,

of the corresponding physical quantity. The solution procedure for N
the temperature field is taken similarly to that given in the last T=Tsinl X sinl,Xs. (31)

section, i.e., an asymptotic scheme for the steady-state heat COffhe peak values of the physical quantities are nondimensional-

duction problem, but details are omitted. ized b
In general, specifying the edge boundary conditions in the senSé y

of the Kirchhoff plate theory only yields the accurate leading- _ 0 . ‘Tij _ o*T

order interior solution. An accurate and consistent description of ui:P—a, T‘i:P_c*’ T= P (32)

the boundary conditions for solving higher-order interior solutions
should account for the specified edge distribution to achieveyhereP=a* T+ for applied thermal load*, P=q;/c* for ap-

decaying state, i.e., asymptotic to the exact solution away fro : + N\~ (k[ o ok ; g
edgeq([55,56]). However, for the special case of the edge bounts;-’“eOl mechafllcal loag, , andP=V" (e (ac ) for applled. elec
ar S ric load — V™. Results for complex loadings can be obtained by a
y conditions: . - . X
linear superposition of respective results caused by simple load-
ings. a/lb=1, hg/h=0.1, m=m,=1, c*=10"Nm 2, e*

U2:U3:7'11:(,0:T:O, at X]_:O,a, (30)
1 -
i
§
08 I(n=0‘5)__L..;",
|
06 | I(n=1)—
< = i
= Ny m| |1 ; ,’
04 Pl
s
i
I(n=2) |
02 o
s
|
Pl
0 1 1 L 1
1 5 2.5 0 25 5
a —
(a) (@) Z,
3 3
< N
1 -1 0 1 2 3
(b) u, (b) u,

Fig. 4 Through-the-thickness distribution of the dimension-
less deflection uj of the plate (a/b=1, n=0.5, 1, 2) under (l) the
thermal load T, (Il) the mechanical load qg', and (ll1) the elec-
tricload —V~: (a) a/h=10; (b) alh=4

Fig. 3 Through-the-thickness distribution of the dimension-
less displacement u, of the plate (a/b=1, n=0.5, 1, 2) under ()
the thermal load T, (Il) the mechanical load qg', and (lll) the
electric load —V™: (a) alh=10; (b) a/lh=4
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Fig. 5 Through-the-thickness distribution of the dimension-
less longitudinal stress o, of the plate under (I) the thermal
load T*, (1) the mechanical load qg', and (Ill) the electric load
-V~ (alb=1, alh=4, n=1)

Fig. 7 Through-the-thickness distribution of the dimension-
less transverse shear stress o5 of the plate under (I) the ther-
mal load T, (ll) the mechanical load q;L, and (1) the electric
load —V~ (a/lb=1, alh=4, n=1)

=10Cm 2, anda* =10 6K ! are used. The 30th-order solutiondeflectionu; of the plate under the electric load is piecewise
is given to ensure numerical convergence to five significant digit#near. The through-thickness distribution of the deflectigrfor
Information on the numerical convergence can be founf8#. the case of the thermal load is nonlinear for a thick platéh(
__The through-thickness distributions of the displacemantand =4). The information provided is useful for constructing a
usz (a/lb=1,n=0.5, 1, 2 under(l) the thermal loadr ", (Il) the displacement-based approximate theory. o
mechanical loady; , (Ill) the electric load—V~ are plotted in __Through-the-thickness distributions of the stresegs, o715,

Figs. 3 and 4, respectively, féa) a/h=10 and(b) a’lh=4. Under 013, andos; are, respectively, depicted in Figs. 5-8 foh=4
mechanical and electric loads, differences of the distributions ahdn= 1, when the plate is loaded If}) the thermal load ", (I)

the displacements; andus between the three volume fractionsthe mechanical loadj; , and (Ill) the electric load—V~. The
n=0.5, 1, 2 are not visibly noticeable. The volume fraction disongitudinal stresses,; and o ;, are discontinuous across the in-
tribution is significant only with respect to the applied temperatuterface between the FG plate and the actuator. In the case of
field. The in-plane displacemeui is linearly distributed through thermal load, their magnitudes are much bigger than those of the
the plate thickness for the case of a moderate thick platl ( transverse stresses; ando;. It is seen in Fig. 7 that the inter-
=10) and is nearly linearly distributed for the case of a thick platacial stressr,5 at z=ag is significant in the case of thermal and
(a’lh=4). The through-thickness distribution of the transverselectric loads. This adverse effect may possibly generate delami-
displacementy is constant for the case of the mechanical loadhation between the actuator and the substrate when using the ac-
even for a thick plate. The through-thickness distribution of théve material to actuate the substrate structure. Although results

1 1

08 | 08

06 06 /g I m
3 5
= I g =

04 | 04

02 m 02 B

I\Iﬁ
0 1 1 0 1 L
-75 -50 -25 0 25 -1.2 0.6 0 0.6 1.2
0, 0

Fig. 6 Through-the-thickness distribution of the dimension-
less longitudinal stress o, of the plate under (I) the thermal
load T*, (I1) the mechanical load qg', and (Ill) the electric load
-V~ (alb=1, alh=4, n=1)

Journal of Applied Mechanics

Fig. 8 Through-the-thickness distribution of the dimension-
less transverse normal stress o33 of the plate under (I) the ther-
mal load T, (I) the mechanical load q;", and (Ill) the electric
load —V~ (a/b=1, alh=4, n=1)
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Table 1 Results for the smart FG plate under the thermal load Table 3 Results for the smart FG plate under the electric load

(alb=1, n=2) (alb=1, n=2)
x, 1 h alh=4 alh=10 alh=50 x,/h alh=4 alk=10 alh=50
T 0.55 0.37792 0.51626 0.55365 it, 1 0.11356 0.29614 1.4916
0.1 0.24759 0.37127 0.40524 0.55 -0.03535 -0.10602 -0.5467
0.1 -0.21339 0.51997 -2.5875
#, 1 -1.8717 -2.0160 -2.0560 0 0.28772 -0.62597 -3.0438
0.55 -1.1348 -1.5130 -1.6141
0.1 -0.6838 -1.0684 -1.1746 i 1 -0.47162 -2.8980 -72.147
0 -0.5957 -0.9724 -1.0770 0.55 -0.48511 -2.9103 -72.159
0.1 0.44064 -2.8604 -72.108
il 1 2.6555 3.8281 15.688 0 024373 -2.6653 71914
0.55 1.6408 3.3455 15.587
0.1 0.9383 2.9365 15.499 7y, 1 7696 .20.07 -101.09
0 0.9854 2.9670 15.505 0.55 3.400 9.03 45.64
_ 0.1 19.231 46.48 230.92
u 1 -88.873 -19.094 -76.381 0.1 -57.815 -145.46 -728.14
0.55 -45.216 -64.787 -70.126 0 55757 -141.69 710.57
or -44.578 -62.876 -67.852
0.1" 8.423 13.893 15.414 5, 1 4.1440 10.807 54.43
0 25.703 41.019 45.261 0.55 -1.4130 -4.237 21.85
0.1 -8.7887 21416 -106.57
G, 1 -68.304 -73.570 -75.031 0.1 -3.0301 7384 -36.74
0.55 -45.354 -60.466 -64.507 0 4.0856 8.889 432
0.1 -28.163 -44.002 -48.376
0. 9710 -15.171 -16.679 O 055 -1.3747 -1.4284 -1.4384
0 -8.458 -13.808 -15.294 0.1 41714 4.2534 4.2686
o 0.55 1.0015 0.5451 0.11705 Ty 0.55 0.83128 0.34944 0.070514
0.1 -2.0493 -1.3173 -0.29106 0.1 0.32442 0.13276 0.026662
T 0.55 -0.19845 0.10537 -0.0050519
0.1 -0.17742 -0.04562 -0.0020160

Tables 1, 2, and 3 provide useful results at some particular

oints of the plate foa/h=4 (thick), 10 (moderately thick or 50
‘?fhin), respectively, under thermal, mechanical, and electric loads.
For a thin platea/h=50, a nearly constant through-thickness dis-

ibution of the deflection is found in every load case. When a

ate is moderately thick or thick, change in the through-thickness

flection becomes significant, especially for a thick platéh
=4) under the thermal and electric loads.

Deflection control is illustrated by taking/b=1, a/h=10,
hg/h=0.1,n=2. According to Tables 1-3, for the applied tem-
peratureT*=300K and vanishing mechanical loag =0, the
required electric voltage through the thickness of the actuator to

for n=0.5 and 2 are not given herein, significant differences

the stress distributions afy;, 045, 013, and o33 between the
three different volume fractions are only noticed for the case
thermal load. The volume fraction does not change much the d
tributions of these stresses in the case of mechanical and ele
loads.

Table 2 Results for the smart FG plate under the mechanical
load (a/lb=1, n=2)

x/h alh=4 alh=10 alh=50 reduce to(1-B) percent of the central deflection of the FG plate
i 1 0.045615 0.29601 7.4617 (x3=0.5%) is calculated asv™/hg=—34.48¢3 (MV/m). For
0.55 0.000846 0.01913 0.5374 example,8=0.4 means that the actuator reduces 40 percent of the
0.1 -0.041700 -0.25642 -6.3858 deflection atx;=0.5% of the smart FG plate.
0 -0.052462 -0.31901 -7.9257
i 1 -0.15724 -2.0287 -245.24
0.55 0.16058 -2.0481 24535 5 Conclusions
0.1 0.15176 -2.0285 24526 ) _ )
0 -0.14744 -2.0179 -245.20 Active control of deflections of a functionally graded plate to
which piezoelectric actuators are bonded on the metal-rich surface
Oy 1 -3.5199 -20.489 -506.11 of the FG plate has been developed. The benchmark problem of a
0.55 -0.3672 -1.893 -45.11 rectangular FG plate with an attached piezoelectric actuator has
o 37135 22.875 569.84 been studied. An asymptotic scheme has been used to generate a
8'1 }';(8’3 ;égg ;i(‘)-;i three-dimensional solution. The solution is exact in the sense that
) ‘ ) any desired numerical accuracy may be achieved. Numerical re-
5, 1 L6646 10,802 272.30 sults are presented that may serve as a reference for developing
0.55 0.0338 0.765 2148 approximate theories and checking numerical solutions. It is ob-
or -L7175 -10.561 263.01 served that the volume fraction distribution is significant only
o1 -0.5921 3.641 90.68 with respect to the applied temperature field.
0 -0.7450 -4.530 -112.54
Gy 0.55 -1.0038 -2.5283 -12.659
01 -0.1609 03946 -1.964 Acknowledgment
B The support of this research by the Army Research Office
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Simulations of Crack Propagation
in Porous Materials

Failure propagation behavior of thermally sprayed coatings containing many random
pores is investigated. The porous coatings are subjected to either external mechanical

T. Nakamura loads or residual stresses generated by temperature changes. The failure growth criterion
Mem. ASME is governed by the critical energy release rate. In our finite element analysis, the cohesive
model is used to separate element boundaries during crack propagation in the inhomo-
Z. Wang geneous materials. The accuracy of the cohesive elements for the quasi-static crack
growth is closely evaluated by an error analysis. We have observed that the cohesive
Department of Mechanical Engineering, elements may artificially increase the model compliance and introduce numerical errors.
State University of New York In order to minimize such errors, the parameters for cohesive model must be chosen
Stony Brook, NY 11794 carefully. Their numerical convergence and stability conditions with an implicit time

integration scheme are also examined. In the porous material analysis, crack propagation
is simulated to characterize its unique failure process. It appears a crack tends to propa-
gate along the shortest path between neighboring pores. In addition, crack/pore coales-
cence mechanism causes the apparent crack length to increase discontinuously. Under
thermally loaded conditions, the residual stresses generated by material mismatch
in multilayered coatings drive cracks to grow. Using the present crack propagation
model, the critical temperature leading to the complete porous coating failure can be
approximated. [DOI: 10.1115/1.1356029

1 Introduction with an implicit time integration scheme. In the past, the cohesive

elements were also employed in number of quasi-static analyses:

The mi_crostructure o_f a thermally_sprayed cera}mic coatingll r example by Needlemaj9], Tvergaard and Hutchinsdii0]
characterized by the existence of various pores, microcracks, s Al Lin et al [11]. When the (’:ohesive elements are used iny con-

boundﬁrlefs,_land uhnmelted_ p_artlclfes. These zlittrlbutes lgr(:]atly INtYAction with a common iterative scheme in static analyses, a
ence the failure characteristics of coatings. In general, the PorQlgyerical instability may arise. This aspect and numerical inac-

microstructure reduces the overall coating strength as well as &?racy associated with the cohesive model are closely examined
resistance to failure. Thermally sprayed coatings are also ani§Qine error analysis presented in this study.

tropic, adding complexity to their mechanical characterization.

There have been numerous experiments to measure the coat
fracture toughnesg[1,2]). For plasma sprayed coatings, th

toughness is measured to be a small fraction of corresponding 1 Characteristics of Plasma Sprayed Coatings. The
value for the bulk material. In this study, we attempt to identifyyrocess of plasma spraying renders unique coating microstruc-
the mechanisms that lead to lower propagation toughness in theses which are greatly different from those of corresponding bulk
porous materials. materials. The characteristics of coating microstructures can be
In our computational analysis, unique microstructural featurgsimmarized as porous lamella structures. The pancake-shaped
of sprayed coatings, described by randomly distributed pores wiplat which is about 1—&m thick and 10—-5Qum in diameter is
various sizes and shapes, are included in the finite element mdue basic structural unit of a coating. Inside a splat, perpendicular
els. These models are similar to the ones used to determine ¢tidumnar grain structures can be observed and indicate the gradi-
effective moduli of coatingg[3]). Since thermally sprayed coat-ent direction of the solidification process during cool-down. Due
ing contains no two pores exactly alike, the pores must be mdge- the nature of the thermal spraying process, various kinds of
eled nonuniformly. Thus, the modeling requires a complex procdefects can be observed in coatinfs2,13)). Those defects may
dure to represent actual coatings. To closely study the propertiigsalong splat boundaries and can be caused by weak adhesion
of actual coatings we have modeled ceramic coatings with stat@gtween splats. The pores and delaminations and microcracks
tical distributions of pore sizes and shapes that follow those &fay grow under certain mechanical and/or thermal load and
alumina-titania coatingg4]). weaken coatings. Numerous experiments have been carried out to
To simulate crack propagation behavior in a highly inhomog&valuate the porosity of the thermally sprayed coatings. Depend-
neous medium, we have implemented cohesive elements in thg on the coating process and spray parameters, the porosity or
porous coating model. The cohesive type elements have been u§&dtotal volume fraction of pores in ceramic coatings may range
successfully in various dynamic crack propagation and fragmeliom less than a few percent to about 20 percent. _
tation analyse€[5—8]). While the cohesive elements were used The global or average properties of plasma sprayed coatings are
with noniterative explicit time integration schemes in these analysually very different from those of fully dense materials. The

ses, we have implemented the elements in quasi-static anawgggctive elastic modulus and fracture initiation toughness of ce-
ramic coatings can be measured by various experimental methods,

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF such a_S uniaxial tensmn,_fou_r-pomt bendmg’ indentation, and ul-
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLIED  trasonic tests. Due to their microstructure, the modulus as well as
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Dectoughness of ceramic coatings can be one to two orders of mag-
14, 1999; final revision, July 26, 2000. Associate Editor: A. Needleman. Discussigiitude smaller than the bulk or intrinsic modulus and toughness.

on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, De - . . . . _
ment of Mechanical Engineering, University of Houston, Houston, TX 77204_479?6@5 and Splat boundaries constitute the major reductions. In ad

and will be accepted until four months after final publication of the paper itself in tl“gition: inhomo_geneous phases, impurities, .and residual stresses
ASME JOURNAL OF APPLIED MECHANICS. probably contribute to lowering of the material constants.
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2.2 Distributions of Pore Sizes and Shapes.Experimen- growths and its load or time increments are not tied to the crack
tally measured pore geometry provides not only microstructurgtowth behavior. Recently, Gao and Kldi2l] and Zhang et al.
details but also the basis for modeling porous coating and stud2] introduced another type of cohesive model. In their virtual
ing how coating microstructures affect mechanical propertiesiternal bonding method, constitutive relation was modified to
There are several precise quantitative studies of pore sizes amzlude a failure criterion and a crack propagation occurs within
shapes in coatings using various techniques, including X-ray telements instead of along element boundaries.
mography. Here our aim is not to exactly model a small section of

; : ; ; ; ; . 3.2 Derivation and Formulation of Cohesive Model. In
a coating with a few pores, butis to identify underlying geometgpg;s study, we follow the model which was originally developed

cal factors which influence the failure response. For this purpo > .

collective information on many pores is needed rather than vefy XU @nd Needlemafb]. Camacho and Ortig] also introduced

accurate descriptions of few pores. Such results are available fréppl9htly different type of cohesive model in their successful

a stereologically measured data obtained by Leigh and Beiidt a1alysis of dynamic impact of brittle material. In general, the

where a complete set of data on the pore size and Sh?\eslve_element acts as a nonlinear spring and the crack growth

riterion is embedded in its constitutive equation. The traction-

_ % T : : isplacement relation of the spring element is defined through a

(Al205—13 W% TIQy) coating were presented. According to th ntial function®. Since the energy required to separate two

measurements, the sizes of most pores fall between 10 and : . h : ;

um and sharp and cracklike pores are abundant in the alumi ydes is equivalent to the integral of traction over displacement,

titania coating. In general, many of the larger sized pores ;ti%s @ directly relates to the fracture energy of growing crack. For

cracklike while most small pores are close to circular shape. Wo-dimensional cracks, the crack may grow under mixed-mode
condition, and this potential function includes both the normal

3 Crack Propagation Procedure (sl\l'?(())v?/ﬁ gs(?g]()j, tangential(Mode 1I) contributions. The form is

distributions found in a plasma-sprayed alumina-titani

3.1 Various Methods to Simulate Crack Growth. Com-

putational simulation of a propagating crack is complex and dif- _ s st On

ficult since the crack shape and tip location must be constantly q)(‘sn‘&‘)q)”[ 1e o) | 1+ E (a-1)
redefined and updated. There are a few classes of approaches to

simulate crack propagation. One approach is based on remodeling On _(6,15%2

or remeshing technique. After crack growth rate and direction are —| 1 g ge : (1)

determined by the stress intensity factors and/or the maximum

opening stress, remeshing of the computational model was carriggye 8, and 8, are the displacement components normal and tan-

out at every increment. Continuous remeshing model is shown ¥nti .

ntial to the crack plane, respectively. Al§p and &¢ are the
Wawrzynek and Ingraffegl4] 6!”0' more recently by meShfree Ol aference displacement®,, is the fracture or the total separation
so-called element-free Galerkin method which was introduced ergy(per unit advancerequired under pure Mode | condition

Belytschko et al.[15]. The advantage of this approach is thay i.e., 5,=0) andq represents the ratio of the Mode Il and Mode |
crack path can be chosen arbitrary but the computational ¢ gcture energiegi.e., q=®, /,). If fracture toughness under
tends to be high due to remodeling at every increment. Anmhﬁfo e Il condition is higher than that of Mode | condition, then

approach uses a continuous array of special elements to represent * to" hormal and shear traction components relate to the
the path of crack growth. The material properties of these el fsplacement components as
ments are based on observed constitutive behaviors of an actuaP

crack in propagation. One of such models is “smeared crack

model” developed by Dagher and Kulendrft6]. The element T zg

property is governed by the observed linear strain softening in the " 96,

wake of crack propagation. A similar method was proposed by P

Padovan and Gupl7] and was further modified by Padovan and == nIan[(s, 15 )e(%!5)*
Jae [18]. Their model implements a movable crack template S neen

which moves within a global field. The template contains special .2
elements and as soon as the crack tip passes through such ele- +(1=q)(8,/85)(1—e (x/20)%)]
ments, their stiffness perpendicular to the path is vanished to

simulate the effect of traction-free crack surfaces. The trace of ab 2,6

— * * )2
these wake elements showcases the trail of crack growth. q(1+ 8,/6%)e %nlone=(0/o0)", 2)
Yet another approach involves a very little or no remodeling of

original mesh. However, possible crack propagation path is 1%

"o

stricted along element boundaries. Many traditional dynam ormalized disp!acement and ”.aC“‘?” relationships according to
crack propagation simulations were carried out with the noda® above equations are skrlna\x/vn in Fig. 1. For the noimal compo-
release/separation technique and the moving singular elemBRPt the maximum traction™=d, fed; occurs ats, = 5y while
method[19,20. The latter method requires a limited remeshinghe shear traction is maximufi{"* at 6= &; /v2. Note the refer-
near the tip although the crack path remains along the predefiratte tangential displacement is givend&is= y2es} q T IT™.
boundaries. In the node release method, when a certain crackcarrying out the crack growth analysis, the cohesive elements
growth criterion is met, the displacement constraint at the cracre placed along every element boundary where fracture may oc-
tip node is removed and replaced by an equivalent force. Duriegr. Essentially these nonlinear springs tie nodes of adjacent ele-
several subsequent increments, this force is reduced and the craekts. A potential source of error associated with the cohesive
tip is advanced to the next node. A similar method, but with elements is theomplianceintroduced between regular elements.
different procedure to create new crack surfaces along eleméithe springs have a finite stiffness, the extra compliance is
boundaries was proposed by Xu and NeedlefgdnTheir method present along the element boundaries. When the total amount of
places a special spring element between two nodes to be sepa compliance is large, the overall structural response is artifi-
rated. Essentially, element boundaries are treated as cohesive siaty softened and an error arises. Alternatively, the cohesive
faces and separation of such surfaces simulates a crack growtlenfergy stored in these elements can overwhelm the strain energy
major advantage of this method is that the cohesive elements cdirstructure[22]. In order to quantify the possible error associated
be included to an existing code without a major reprogrammingith the cohesive model, we have carried out a detailed error
Also the cohesive model can handle simultaneous multiple craahalysis.
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H=0.75W

(a)

®

Fig. 2 (a) Schematic of edge-crack panel used in the error
analysis. (b) Top-half of finite element mesh near crack tip. All
51/ 6t* the elements in this zone are shaped square with the side
length equal to 1 /400 of the panel width.

Fig. 1 Relationships between normalized displacement and
traction used cohesive model. The shaded areas represent the difficult to achieve numerical convergence und&r—0 condi-
fracture energy. (a) Normal component for Mode I, (b) tangen- 5 The numerical instability arises from the abrupt change in
tial component for Mode II. . . "
the tangent/slope of traction-displacement curvedgt 6, as

shown in Fig. 1a). As & —0, the rate of change increases. This
means, while a smallef}; is desirable in reducing the artificial
compliance, it worsens the convergence rate during iterative time

4.1 Computational Model. If the cohesive model is de- integration. In general, the numerical instability cannot be re-
signed to simulate crack growth in brittle materials, its accuragplved with taking smaller load increments. Furthermore, the sta-
can be measured with known solutions of growing linear elastiility condition worsens when smaller elements are used near
cracks. Here we have carried out an error analysis using a simpf@ck tips. We note that the linear or extrinsic traction-
crack model under pure Mode | loading condition. Suppose tigésplacement relatioiTy* at §,=0) such as developed by Ca-
separation energyp,, in (1) is kept constant everywhere in themacho and Ortiz[6] limits any unwanted compliance in the
model, the crack must propagate under constant energy releesslel. However, in many crack problems, such a relation cannot
rate. This means once the energy releasegagaches the critical be used in conjunction with an implicit code where iterations are
value G.(=®,) and the initiation occurs, the crack continues tearried out to achieve the equilibrium. Regardless of models, a
grow atG=g,. This condition is simulated with an edge-cracksudden introduction of active cohesive elements initiates a nu-

4 Error Analysis of Cohesive Model

specimen containing cohesive elements. merical instability. In order to avoid this condition, an initial stiff-
Under pure Mode | condition §=0), the normal traction- ness of cohesive element must be set finite. Many past analyses
displacement relatiof2) reduces to with cohesive elements were carried out with explicit central dif-
. ference scheme under dynamic conditions where no iterations
To=®n(8,/55%)e %%, (3) were needed.

It is clear from the above equation, complete nonlinear spring Hére we tested several different values%jfto investigate.the

properties are defined Iy, ands? . Sinced,, corresponds to the level of error generated by nonzes . In the error analysis, a

material’s critical fracture toughnesg , the reference displace- cantilever-type edge-crack specimen as shown in Ra.i& con-

ment&* is the only parameter which can be set arbitrarily. Oncddered. The specimen is loaded by the displacemenescribed

5% is chosen, the maximum tractiof"™ as well as the stiffness at the edges. When the energy release rate reaches the critical
n ,

. X . value, the crack begins to grow. During the propagation, the en-
oi the cohesive model are z_al_so defined. Accordm_gsijoa_small ergy release rate remains at the constant level in an ideally brittle
6, translates to a large initial ,.— &, slope or spring stiffness.

N 4 ors Y ) S solid. Due to the symmetry condition, only the top half of the
Since the stiffness of element boundaries is ideally infinite bemg‘y’oecimen is modeled. A total of 19,200 four-noded elements is
crack growth, it suggests thal be set as small as possililee., ysed to construct the finite element mesh. As shown in Fig), 2

8y —0). In fact, any compliance; #0) introduced by the co- elements in the vicinity of the crack tip are kept square at a con-
hesive elements in a region without cracks may erroneously igant scale. The side-length of those elements are séfj,at
duce the entire model response. However, in quasi-static analyse3.0025V, whereW is the width of the specimen. The model
with a common iterative schem@@.g., Newton-Raphsonit is dimensions are selected carefully to minimize the boundary effect.
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First, we chose the crack to propagate over 100 elements or about

25 percent of the widthW. The lead to the initial crack length to w

be a;=0.378V. The half-height is also as 0.3Wbso that the —

growing crack tip is at least the same distance away from outer ‘

surface. Suppose the K-field size is about 1/10 of this length, then cohesive elements

it spans at least 15 elements in any directions. This means the

solutions should be nearly independent of geometry and the near- \)\

tip element size is the onliength scalethat influences the accu-
racy of the cohesive model.

4.2 Dimensional Analysis. Under Mode | loading condi-
tion, the parameters that can influence the computed results are
the Young’s modulug, the Poisson’s rati@, the normal separa- (a)
tion energyd,,, the reference displaceme#if , and the near-tip
element lengthy, . Based on dimensional consideration, the error Case B
function £ can be expressed as —

E=E(8 1p ElDlyp ). ) cohesive elements
The primary error arises in the cohesive model due to the presence P ,(
of extra compliance introduced along element boundaries. This o \
means the magnitude of the error scales with the relative stiffness
of the cohesive elemenwT, /d4,) with respect to the material
modulus (E). The average stiffness of cohesive element before
reaching the maximum traction &1,/ 8y, or it is proportional
to <Dnlﬁp/5:2. Using this expression, the error associated with the (b)

cohesive elements can be given as a function of the normalized
stiffness as

Case C -

E=¢&

q)nltip
Esr?)

The error in the energy release rate can be obtained by consider- i
ing the cumulative stiffnesS,, of all cohesive elements. We can B \

assume normalize8,., to be approximated with one-term power-
law expression as g%:%’:g:

Scohwa(cbnltip A
S “\Est?
. y . _ ©
Here S is the overall structural stiffness without cohesive ele-
ments,« and B are the factors which depend on locations and tot&ig. 3 Three cases with different domains where cohesive el-
number of cohesive elements and assumed taxbe) and 8 ements are placed. (a) Case A with cohesive elements only
>0. Any effects of the Poisson’s ratio are implicitly included inglong the crack path; (b) Case B with cohesive elements in
these terms. Using the above approximation, the dimensionl%s%ﬁvméﬁoéga%dom_a'n' (c) Case C with cohesive elements in
error inG can be expressed as : : omain.
Gidoa— G S P . \B -1
_ Yideal coh o n'tip +1 ) (7)

g = = =
¢ gideal S+ Scoh E5: :

Here, Gigeal COITesponds to the exact solution for ideally brittle,,
solids and a displacement-controlled loading condition is assu total number of cohesive element increases. the error also

in deriving the expression. I¥), the error is directly influenced oo “pyring the analysis, the energy release rate is calculated at
by the reference displacemedf chosen for the cohesive ele-gyery time increment using the domain integral expressiog of
ments. Note a$y, — 0, the error vanishes. The values@and8  ([23]). In each model, computations are carried out with various
can be determined from the computations of the test problem 512 to determine the error parametersand g in (7). Also in all
comparison with the ideal solutions. We also note that the abo¥gsesq in (1) is set to unity.

expression is valid for the error evaluation of other types of The results of the energy release rate with the cohesive ele-
traction-displacement relations for cohesive elements. For &ypnts along crack patfCase A are shown in Fig. @&). As the
ample, if the relation is given by bilinear curves as by Guebellgrescribed displacement increasgsncreases until it reaches the
and Baylor[7], the displacement at the peak load can be subsfiritical valued,=G, . For the ideally brittle solid, the crack ini-
tuted for &, in (7). tiates and continues to grow at constgras shown in the figure.

4.3 Computational Results. In placing the cohesive ele- Although this condition may be simulated witif —0 in the co-
ments within the crack model, three separate cases are considehgg§!ve elements, it is difficult to obtain converged solutions for a
They differ in domain sizes where the elements are included. THery smalld; in an implicit integration(e.g., Newton-Raphsgn
domains are, Case A—only along the crack propagation (path In the present model, the numerical instability occurs when
symmetry ling, Case B—within a smaller domain surroundings;, /I j,<1.4X 103, When smaller values are assignedsfo, the
the crack tip, and Case C—uwithin a larger domain surrounding tleguilibrium convergence cannot be achieved even with very small
crack tip. These domains are illustrated in Fig. 3. The cohesiicrement sizes. The maximum difference between the ideally
spring elements are added along every element boundary witbirttle solid and the cohesive models occurs at the crack growth
the respective domains. There are 150, 4,437, and 10,577 cohegtéation point (A/l;,=0.0498). Based on the results of different

%) cohesive elements

(6)

ments in Cases A, B, and C, respectively. It is expected that as
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Fig. 5 Computed results for various reference displacements

&% in Case A. (a) Normalized crack advanced distance shown
as a function of normalized prescribed displacement, (b) nor-
malized energy release rate shown as a function of normalized
crack advance distance.

Fig. 4 Computed results for various reference displacements

&% in Case A. (a) Normalized energy release rate shown as a
function of normalized prescribed displacement, (b) normal-
ized load shown as a function of normalized prescribed dis-
placement.

values of8* , the parameters i7) can be approximated as surrounds elements near the crack tip and the opening stress ahead
n’ i R of the crack to be square-root singular in radial distance. With

=27 andB=0.6. With these values, the error at the initiation cagyyr-noded isoparametric elements in our model, an equivalent

be expressed as nodal force due to the singular stress can be determined by inte-

Gidear— Geo Dl O -1 grating the stress with linear interpolation/weighting functions.
5@%—1 ~[27( | +1 (8) The force can be calculated for a node located at an arbitrary
Gideal | iniiation Ed, distance away from the tip. The maximum force is attained when

Note that the above error is the maximum error at the cradR€ node is locatet};,/3 ahead of the presumed crack-tip location.
growth initiation. In fact, as the crack propagates substantially, tiethe crack propagates and coincides with the node, the nodal
energy release rate of every cohesive model converges to the id85e is reduced to 86.6 percent of the maximum value. According

case. Although not shown here, we have tested other valugs of ©0 Fig. Ya), 0-865rrT_aX occurs ats,/ 5y =1.64 in the cohesive
and found the expressiof8) to hold for a wide range ofs* elements. Also at this point, the fracture energy is 48 percent of
.

Different values o were also shown to agree well with the errof € cfitical energy o> =0.48D, . Since® is also applicable in
estimate. In addition, we have inspected the Ioad-displacemgﬁlf(ed'mc’de.Cases’ this _value IS monlt_ored throughout our analy-
relation of the growing crack model as shown in Figo)4HereP ses to identify the location of crack tip. We note that Xu and
is the reaction force at the prescribed displacement. Without afpedlemari5] useds,/5; ~1 and Needleman and Rosakis!]
cohesive elements, tHe—A curve has a sharp peak at the initiatiSeds, /d; =5 to define the crack-tip location. The crack exten-
tion point (A/l4,=0.0498). When the cohesive elements are irgion is shown as a function of the prescribed displacement in Fig.
cluded, the structural stiffness is reduced and the maximum lo8). Better agreements with the ideally brittle solution can be
is lowered as shown in the figure. The increased compliance of thleserved with smalles}; . With larger &;; (e.g., 5} /1;,=0.004,
cohesive models is also evident from the reduced slop&s-af the initial crack growth occurs prematurely bef@faeaches the
curves. The difference in the peak load can be shown with antical value. However, all models converge to the ideal solution
error expression similar t67). at largerA. These results confirm the suitability of the definition

The accuracy of crack growtAa is examined in Fig. &). used for the crack-tip location. In Fig(l9, the normalized energy
During crack propagation, there are usually several active cohelease rate is shown as a function of crack growth normalized by
sive elements witl$,>0 andT,>0 along the crack path and thethe element length. The results sh@ivof the cohesive models
determination of the crack-tip location is difficult. In order toapproaches the ideal solution at larger crack growth. In fact, after
clarify this problem, we have operationally defined the tip locatiogrowth over several element lengths, the error is significantly re-
by the following method. First we assume that Mode | K-fieldluced.
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Fig. 6 Normalized energy release rate for various reference

displacements &}, . (a) Case B, (b) Case C.

The computations are also carried out for the models with
larger cohesive element domaifSases B and I Since much
more cohesive elements are present, the results are expected to
deteriorate. Only the energy release rate as a function of the pre-
scribed displacement is shown in Fig. 6. Unlike Case A, the cal-
culation diverges whens;/l;,=0.0014 is prescribed in both

5 Crack Propgation in Porous Materials

5.1 Computational Models for Porous Coatings. In order
to construct the unique microstructures of plasma sprayed coating,
it is necessary to establish a model which allows for random dis-
tributions of numerous pores with various sizes and aspect ratios.
Within the model, pores are placed at random locations, and every
pore is assumed to possess three additional geometrical attributes:
pore sizel/area, pore shape, or aspect ratio, and pore orientation
with respect to the spray direction. A computational program has
been developed to generate finite element models which simulate
coatings with such attributes. This procedure is a modification of
the one developed by Nakamura et[8l]] to investigate the effec-
tive properties of porous materials. This procedure is briefly dis-
cussed below.

First, all the pore shapes are idealized to be hexagonal. The
size/area is assumed to range frég;, to 107, whereA, is
chosen to be about §6m?. Any pores which have less area have
a very small influence on the overall response. Also the aspect
ratios of pores are set to vary froelb=1 to 10(a andb are
major and minor axgsFurthermore, instead of allowing continu-
ous variations in the area and the aspect ratio, we have used five
distinct pore areasfA/A,,=1, 2, 4, 6, and 10 and five aspect
ratiosa/b=1, 2, 4, 6, and 10. Therefore, there are 25 possible
types of pores varying in area and shape. Categorizing pores into
25 types enables us to assign various weight factors to the pore
types. The weights are set to the pore size and shape distributions

P, 412
A O O O O i

Pl L L T T bl

cases. In Case B, the results still coincide with the ideal solution

but at a largerA as shown in Fig. @). The errors inG at the

(@

initiation point are also much greater than those of Case A. Simi-

lar results are obtained for Case C as shown in Fig\.. @ased on

these results, we have again computed the error paramet@®s in
The proportional factow is 9.5 and 5.3 for Cases A and B, re-
spectively. The power coefficiert appears to remain constant at

0.6 in both cases.

The present analysis has quantified the error due to the cohesive
elements in a crack propagation analysis. The size of error is
related to the total number of cohesive elements as well as the
choice of reference displaceme#if . In order to minimize the
error, the reference displacemesft must be kept small. How-
ever, the possible size @, is restricted by the convergence con-
dition of the implicit time integration scheme. Prior to any crack
propagation analyses, an error for a giv&h can be estimated
with the simple formula introduced if7). It was observed that

regions with
cohesive el its
HH PP PR e PR T T E UL

HE WA

while the parametetr depends on the total number of cohesive
elements, the other paramejgappears to be constant at 0.6. The (b)
parameterr decreases with greater number of cohesive elements

in the model here. Although the error analysis is carried out wi

'iﬂ . 7 (a) Schematic of panel with porous material under ten-

an edge-crack model, the present error estimates should be appli-joad. The starter crack is placed in the center of the panel.
cable to other models as long as the K-field is sufficiently largep) Finite element mesh. Regions with porous elements are in-

than near-tip element sizes.
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Fig. 8 Sequences of crack growth at three levels of prescribed (b)
displacements. Only the region near the starter crack is shown
for clarity. The starter crack grows toward neighboring pores. Fig. 9 Computed results of porous material under tensile load.

(a) Load versus displacement. A small drop in the load is due
to a large jump in crack length.  (b) Effective crack length (crack
length profile ) versus displacement.

of alumina-titania coatings given by Leigh and Berndi. In

addition to the variations in shapes and sizes, every pore is rotated

by an arbitrary angle. In carrying out the analysis, the mesh desigpe sty of the model is 7.5 percent and the effective elastic
has shown to possess a significant effect on the computatio dulus and Poisson’s ratio are separately calculatedgs

accuracy. The elements near the crack path must be sufficiently og Gpa and.=0.21, respectively. These values are obtained
small to capture accurate crack propagation behavior. We haygy, the extension and lateral contraction of the model under
tried several mesh designs to minimize mesh dependence. H‘?)’HT ially loaded condition. The 28 percent drop in the Young’s

ever, detailed mesh convergence and error analyses are not cagiied s is attributed to the pores in the material. A finite element

out V‘.'ith th? porous modt_els due to the qomputationgl limitationnesh is constructed with about 10,000 elements as shown in Fig.
The inclusions of cohesive elements significantly increase t

. . . /fb). The average element size near the starter pore jisn3
model size and the computations would require beyond our availg|jowing the results of the error analysis, cohesive elements are
able comput_atlonal resources. laced within selected regions instead of the entire plate. Since the

All the solid elements are chosen to be four-noded plane-strfﬁpdck propagation is designed to occur at the center, two separate
elements. The matrix or pore-free modulus is chosen from th@ains at both sides of the starter crack are chosen for the co-
hano-indentation test data and set as 150 .@2@' Although the agjye elements as shown in Figb) The critical fracture energy
bulk elastic modulus of alumina-titania is much higher, spl L assumed to beb =10 J/n? and the minimum reference dis-

boundaries, impurities, and other factors unique to thermal . e _
sprayed coatings contribute to this lower modulus. The matr[ﬂacement before thg instability is found to bp=0.1xm. Un-
ike the error analysis, the element sizes are not small enough

Poisson’s ratio is chosen to he=0.25. In the first case of the d 1o th / K s d th d K-field si
coating model analysis, the crack propagation under far-fieﬁmpare 0 the porejcrack Sizes an € assumed K-ield size.

uniaxial tensile condition is examined. In the second case, t¢!S Means the error approximation formula is not applicable
crack is propagated by the residual stresses generated by the - However, if respective values are assigned, the maximum

mismatch in a multilayered model. error is about 30 percent if8). . ' .
Y The porous material is loaded gradually by increasing the dis-

5.2 Crack Propagation Under Tensile Load. For the placement along the top and bottom boundaries of the model. The
simulation of crack propagation under tensile load, a rectangukgquences of the crack propagation are illustrated in Fig. 8. The
plate as shown in Fig.(@) is considered. The shapes and sizes aftarter crack begins to grow when the prescribed displacement
pores follow the measured distribution of sprayed alumina-titanikeachesA =0.6 um. Initially the right tip propagates toward the
There is a total of 72 pores in the model. The location of eacateighboring pore on the right side. At abaut0.7 um, the crack
pore is chosen arbitrarily using a random generator program ead the pore coalesce to form a longer crack. The effective crack
cept for the horizontal “starter pore/crack” located in the centdength which measures the crack length projected onto the hori-
of the model. The starter pore is placed to initiate crack propageental axis is denoted bg.;. At higher load, the crack grows
tion and it has the lengta=100um and aspect ratia/b=10. toward the nearest pore on the left side. However, the coalescence
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Fig. 11 Sequences of crack growth at three levels of tempera-
tures. Only the ceramic coating is shown for clarity. The starter
crack grows toward neighboring pores.

(b
Fig. 10 (a) Schematic of multilayered model with porous coat- —0.25 «=8.2X10"® where « is the coefficient of thermal ex-
ings. Regions with cohesive elements are indicated. (b) Top '

pansion. The properties of bond ca@iCrAlY) and the steel
substrate ar&=280 GPa,»=0.25, a=13x 105, a,=200 MPa,
and areE=80GPa,»v=0.3, «=12.5X10 %, 0,=800MPa, re-

. . . . spectively. Herar, is the yield stress. All the material properties
with this pore does not occur during the calculation. One soligte temperature and time independent. For the ceramic coating,
element is trapped between the cracks extending from the ceqier opane and size distributions of pores again follow those of
crack and the left pore. The relationship between the reactigy, mina-titania. There are total of 72 pores in the model and the
force and prescribed displacement is shown in Fig).Here the - 4oty is 7.5 percent. As in the tensile load case, a slightly tilted
relation is nearly linear except nedr=0.7um where a small g, rer hore wittn=100um is placed in the center of the model.
A¥fe effective elastic modulus and Poisson'’s ratio are calculated as
=108 GPa and .;=0.21, respectively. To facilitate the crack
%rowth, the starter pore is oriented close to the vertical direction.

part of finite element mesh for the multilayered model.

of the crack and the pore. The effective crack length is also sho
as a function of prescribed displacement in Figh)9Due to the
porous structure, the crack growth occurs nonuniformly. A lar
jump in a¢ corresponds to the crack coalescence with the neig
boring pore.

nder thermal loading, large residual stress is expected in the
irection parallel to the layer boundaries. There is total of about
13,000 four-node elements and the average element size near the

5.3 Crack Propagation Under Thermal Load. Many ther- Starter pore is Zum. Finite element mesh for the top part of the
mally sprayed ceramic coatings are used as thermal barriersh#ltilayered model is shown in Fig. {if). Cohesive elements are
high-temperature environments. The porous microstructure pRjaced within the two separate regions at both sides of the starter
vides increased insulation for the substrate material. In gener@iack as shown in Fig. 18). The critical fracture energy in ten-
metallic bond coat is sprayed onto the substrate followed by c&on is again chosen to ise,= 10 J/nf and the reference displace-
ramic coating. A typical multilayered model for the thermal barment is set aB; =0.35um, which is the minimum displacement
rier coating is illustrated in Fig. 18). Here the width of the for convergence. During the calculation, the temperature is uni-
model is 1 mm while the steel substrate has the thickness ofd@mly increased to generate tensile residual stresses within the
mm. These dimensions are large enough so that the boundadesamic coating. No temperature variation within the model is
have limited effect on the crack propagation behavior. In additionpnsidered in this analysis.
both sides of the model are constrained to remain straight to rep-The evolution of crack growth within the ceramic coating at
resent the symmetry condition. different temperatures is shown in Fig. 11. Crack growth initially

Due to the thermal stresses generated by the material mismasthrts when the temperature reaches about 460°C. Both tips of the
a crack propagation can occur under temperature changes. $tater crack slowly grow toward the neighboring upper and lower
ceramic coating is assumed to be elastic while the bond and splores, respectively. The coalescence of the crack and the lower
strate materials are modeled as elastic-perfectly plastic. The npare occurs at about T=600°C. The residual stress within the
trix properties of the ceramic (AD;—TiO,) is E=150GPa,» ceramic layer for the temperature range 306°L£T<700°C is
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400 rate the accuracy of calculated results. Alternatively, the coeffi-
cient of damping must be kept very low to avoid the error asso-
ciated with the artificial viscosity.

300 The cohesive model introduced by Xu and Needlef&rof-
fers a convenient approach to simulate crack propagation. The
200 model does not require a major modification of existing finite

element codes and only inclusion of nonlinear spring elements is
needed. However, the cohesive elements may introduce unwanted
100 | compliance and reduce the accuracy of calculated results. In the
present study, the accuracy of cohesive elements in brittle crack
propagation is carefully investigated. A formula for the approxi-
0 . . . mated error is also introduced. The formula should be applicable
300 400 500 600 700 for other cohesive models if their near-tip elements are suffi-
AT (°C) ciently small compared to the K-field sizes. Our results suggest
@) the initial slope of traction-displacement curve to be set as steep
as possible to minimize the error. However, the slope or the ref-
erence displacement is also restricted by the convergence criterion
stated above. Unfortunately, other types of traction-displacement
relation cannot alleviate this difficulty. In general, the traction-
based fracture initiation criterion introduced by Camacho and Or-
tiz [6] also causes numerical instability when it is used with an
implicit time integration schemée.g., Newton-Raphsgrunder
quasi-static conditions.
100 | The analysis of crack propagation in porous materials offers a
means to estimate the critical failure load or temperature. Presence
of various pores in thermally sprayed ceramic coatings not only
lowers the material stiffness but also reduces the fracture tough-
s s . ness. Our numerical model has simulated crack/pore coalescence
300 400 00 600 700 during propagation. It appears that the crack growth rate as well as
AT (°C) the path is highly influenced by neighboring pores. The coalescing
mechanism in porous materials may explain the very brittle nature
®) of sprayed ceramic coatings. We also note that the critical failure
loads found in terms of force or temperature probably represent

Oresidual (MPa)

300

defr (um)
N
8

Fig. 12 Computed results of porous material under tempera-

ture increase. (a) average residual stress within porous ce- conservative estimates. Inclusion of the cohesive elements in-
ramic coating; (b) effective (apparent) crack length as a func- creases the structural compliance and may underestimate the fail-
tion of temperature. ure loads.
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Department of Mechanical Engineering, In this paper, a new series expansion for calculating the bending moment and the shear
Wayne State University, force in a proportionally damped, one-dimensional distributed parameter system due to
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University of lllinois, the locations where the moving forces are applied. Numerical results are presented to
Urbana, IL 61801 demonstrate the rapid convergence of the new series representation.
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1 Introduction convergence of the modal seriéspectral representation for the

. _— Green'’s function(or dynamic flexibility or reacceptangevhich
The p_roblem of loads traveling along a _d|str|buted parameFﬁfas been known for some years as the “mode-acceleration”
system is commonly encountered in many important engineerigg. ., 111)). Interested readers are referred to the papers by
systems. Examples include the design of railroad tracks with hig owell [12] Palazzolo et al[13] (general case of a nonconserva-

speed trains and highway bridges with moving vehid(ds2]), tive finite-dimensional systemPesterev and Tavrizdd4] (free-
high-speed precision machining3]), circular saw blade$[4]) ;ree conservative distributed parameter sysberand the refer-
computer disk drives(5)), and _ca_1b|es transporting humansences therein. The mode-acceleration technique has been applied
_materlals([e_]). The accurate prediction Qf the stresses de_velop%l problems related to the steady-state vibration of structures due
|n_the continuous system due to moving loads is crucial aSt& harmonic excitations. However, the extension of this technique
miscalculation may lead to undesirable human casualty and 148he moving loads problerfwhich is transient in natujes not

_In this paper, a new method is proposed to calculate the bengl.e|erated convergence @) as the sum of a conventional spec-
ing moment and shear force of a proportionally damped beam

; . . | representation and a “residual flexibility” which accounts for
to moving concentrated loads. The term “moving concentratqgle {ryncated higher order modes. The “correction function” de-
load” is used to denote either a moving force that is & priofyeq in this paper may thus be viewed as an extension of the
known or one that depends on the interactions between the begion of residual flexibility for moving load problems.
and the moving subsystems it carries. Hereafter, when the movingrpig paper is organized as follows. In the next section, a math-
force is a priori known, the problem is termed the "moving forcematical formulation of the problem is given. In Section 3, re-
problem.” The solution in the form of a series representation igyonse solution for damped continua in terms of the conventional
first derived for arbitrary moving forces and then extended to th@yies is discussed and the modal representation for the static
moving oscillator problem in which the moving forces depend ogeen’s function is given. The improved series representation for
the responses of the beam and oscillators. a proportionally damped beam is derived in Section 4. In Section
It was shown that the response and slope of the beam canggnhe application of the method to the moving oscillators problem

accurately determined by using only few terms of a convention@l giscussed. The efficiency of the new representation is illustrated
eigenfunction serie8—10]). However, higher order derivatives by numerical results in Section 6.

of the series(required for calculating the bending moment and
shear forcgconverge poorly and cannot capture the jumps in trr%_;

shear forces. In this work, the eigenfunction expansion is in- Prol.)len? Statement. ) _ o
proved by a “correction function” which bears information about The vibration of a spatially one-dimensional, damped distrib-
the shear force jumps at the locations where the moving loads &ted parameter system due to moving loads is governed by

bridge design engineet§7]). eééessed in two equivalent form¢l) in terms of a series with

applied and includes the contributions of the truncated higher P J
modes in the series. This results in a better and more efficient pﬁw(x,t)JrDaw(x,t)+Kw(x,t)

evaluation of the bending moment and shear force.
The genesis of this technique can be traced to accelerating the

|
| _ B =2 FGhax-4(1), xe[oL], (1)
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i=1
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED ) . o o )
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jansubject to given boundary and initial conditions. Heleis the
10, 2000; final revision, Aug. 18, 2000. Associate Editor: A. K. Mal. Discussion ofength of the continuumy(x,t) is the transverse displacement of

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi ; . : ; ; .
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arrzecﬁ%t continuump, D, andK are sPatlaI differential operators rep

will be accepted until four months after final publication of the paper itself in thé€S€NtING inertia, damping, and stiffness of the system, respec-
ASME JOURNAL OF APPLIED MECHANICS. tively, p andK are positive definite anb is positive semidefinite;
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S8(x) is the Dirac delta-function; ang (t) are the time-dependent N

coordinates at which the forces are applied. The functits,t) w(x,t)= >, Rd@n(X)qn(t)], (6)

are assumed to be twice differentiable with respect to both argu- n=1

ments for 6<x<L and fort satisfying the inequalities €@ ;(t) . - .

<L, and are not required to be a priori known. In this work, nghere the time-dependent coefficiengt) are given by

restrict our consideration to systems with stiffness operator of 1

order four. The reason for this is explained in Section 4.3. qn(t)= ~
We consider homogeneous boundary conditions and, in particu- n

lar, assume that the continuum has no rigid-body modes and its3 5 siatic Green’s Function. By definition, the static

ends are fixedy(0,t) =w(L,t)=0. We further assume zero initial green's functionG(x, ¢) is the solution to the equation

conditions, which implies that the continuum is at rest fer0.

Note that this assumption merely simplifies the notation and does KG(x,&)=d8(x—¢§) (8)

not affect the idea behind the development of the new series r

ep- ' - .
resentation. We first consider the case of one force moving Wittf%d' _fc_)r a fixed Va'“? of, 0<é<L, sa_ltlsfles_the given boundary .
constant velocity; i.e.,| =1 and{,(t) =ot. This requirement, in conditions. For a string or a beam with arbitrary boundary condi-
fact, is not needed for the analysis, and the resulting equations E%:Sr FgethstefttlfmGrfeen S Ifunncr::(_)fb(x,g) canAeaS|Ir)]/dbe”octi}tlaé?)ed
easily extended to the case of many forces moving with arbitrarifyf" €' N the form of a polynomidsee, €.9., Appencix ;
varying velocitiessee Remarks 2 and 3 in Section }4.4 r a uniform structure or in terms of quadratures for nonuniform
It is well known that the solution to Eq1) can be expanded in strluctut:ef.f I il al dth dal . i
terms of the eigenfunctions of the distributed system. Howeveru[.a n ;gr?heo ?{‘:{% Véeevg'n, afsongtetgn | te' mo aenS?r:I(izrﬁprg?etEea_
disadvantage of using this expansion is the poor convergence '8 S _.|~ " S function. ~|s given | s
the series in calculating the bending moment and shear force fienvalues\,=iw, and eigenfunction®,(x) of the conserva-
cause of the moving singularities on the right-hand side of Eqg. tive continuum assoc!ated with thfe damped one under consider-
As a result, these calculations are prohibitedly expensive in ter@éon, Which are solutions to the eigenvalue problem
of the number of terms required. In what follows, a “correction (X2p+K)Bn(X)=0 ©)
function” is derived to accelerate the convergence of the series, nP #n '
which is expressed in terms of the static Green’s function of thehd 3,,(x) satisfy the conventional orthonormality relations for
continuum and its modal parameters. When deriving the improveénservative systems
series representation, we need some results concerning the con-

t
j e)‘n(t_f)zpn(vT)F(vT,T)dT. (7)
0

. . . . . . L
ventional series expansion, which are summarized in the next ~ ~
section. P f Pn(X)p@;(X)dX= 8y (10)
where 6,,; is the Kronecker delta. Thu&(x,£) can be approxi-
3 Conventional Series Expansion mated by the modal series
In view of the assumptions stated above, we will look for so- N~ Y N~ Y
lution to the equation G(x, &)=, o )(pn(g)sz o )fn(g). (11)
2 n=1 'd)ﬁ n=1 )\n)\n

J
P W DD Z WX D HKW(X, D =F(X,1)8(Xx=vt) (2) The derivation of the improved solution relies on the modal series
. . .. representations for the dynamic and static Green’s functions. As
subject to given homogeneous boundary and zero initighn pe seen fromd) and (11), these representations are given in
conditions. terms of different sets of eigenfunctions, which makes the analysis
3.1 General Case of Damping. It is well known that the of the general case of damping in the system rather complicated.

solution to Eq(2) can be written in terms of the dynamic Green’d this work, we confine our efforts to the case of a proportionally
functiong(x, 7,t) of the distributed system dsee, e.g.[15]) damped continuum, for which the relationship between these sets

can be easily found.

t L
w(x,t)=f dTJ g(x,p,t—1)F(n,7)8(n—v7)dy 3.3 Proportionally Damped Continuum. It is well known
- 0 ([17,18)) that, if the system is proportionally damped, the system
t eigenvalues are complex,,= «,+iw,, but the eigenfunctions
Ef gx,vrt—7)F(vr,7)dr. (3) can be taken as real. However, as can be easily seen, no real
— functions satisfy the normalization conditidb) (since \,;s are

. , L caomple®, and we need either to use complex eigenfunctions to
Inqop()jr;cggﬁ,eéhe Green’s function is represented by the truncat{ea e'advantage of the modal _series repr_esent&ﬂbfnr the d){- |
namic Green'’s function or to find its equivalent representation in

1N terms of the real eigenfunctiorig,(x). We will look for the
ag(x,p,t)= > z }\—e}‘”tqon(x)gon(n) eigenfunctions of the damped system in the form
n=*1 \n
@n(X)=Cn@n(X), 12)

, (4) with a complex multiplierc,, being chosen from the condition that
¢n(x) satisfieg5). Substituting(12) into (5) and using Eq(9) and

where complex, ande,(x) are, respectively, theth eigenvalue the relationy=—x,x,, we find thatc,=—i\,/wy .
and eigenfunction of the distributed system. In additigp(x) . Substituting(12) into (4), we get the modal series representa-
must satisfy the normalization conditigfiL5]) tion for the dynamic Green’s function in terms of the real eigen-

functions of the corresponding conservative continuum as

N 1
= nz,l R%)\— eMnon(X) @n(7)

L 1 L
J’ (Pn(X)P<Pn(X)dX— F fo ‘Pn(X)K‘Pn(X)dXZZ- (5)

N
1
0 " 9070 = 2 Re{mew Bu(X)%a(7)- (13)
Thus, we arrive at the approximation of the response of the system " "
by the series expansion The solution to Eq(2) is given then by
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N 7 d
W(x,1)= >, Bn(x)aR(t) (14) P o WX D Z WX +KW(X,1)
n=1

= —p(Hu(X, t)h(t) + 2H(x,t) (1) + H(x,t) 8" (1))
—D(Hy(x,t)h(t)+H(x,t) (1)), (22)

Whereqff(t) is the real part of the integral

t
qn(t):.if eMt g (v F(v T, T)dT. (15)
lwn Jo whereH,(x,t) andH(x,t) are the first and second derivatives,
respectively, ofH(x,t) with respect to time. If the order of the
Fﬁ@]est derivative in the stiffness operator is four, then the right-
hand side of Eq(22) has no moving singularity, and hence, the

functionW(x,t) can be better approximated by the series in terms

The slope, bending moment, and shear force are obtained by
term-wise differentiation of the series i14) with respect tox.
For example, the shear force for a uniform beam is given by

N of the eigenfunctions of the continuum comparedvig,t). The
ElW,, (x,t)= > EI2"(x)aqX(t), 16) condition imposed on the stiffness operator is essential. Indeed,
wolX1) nZl @n(x)an(t) (16) the functionH,(x,t) contains the second derivative of the static

) o ] Green’s function with respect to the second variakdg,(x,vt).
whereEl is the flexural rigidity of the beam. As mentioned beforeyf the differential order of the stiffness operatéris two, then it
because of the jump in the shear force, sefie® converges follows from Eq.(8) and the symmetry o6(x,&) that the right-
poorly and an accurate approximation of the shear force requirefgnd side of(22) contains a moving singularity, the function

large number of terms in the series. In the next section, we derigex —t). This implies that the method to be presented cannot be
a new representation which explicitly takes into account thigirectly applied(at least, in the form described belpt systems
jump. that have differential stiffness operator of order two, e.g., to

strings or rods.
We will expand the solution t¢22) in the series oiN eigen-

4 Improved Solution Representation for a Proportion- functions of the distributed system and write it in the form

ally Damped Beam

t L
4.1 General Idea of the Approach to be Used. As afore- W(x,H)=- J:xdeO 9(x,7,t=7)p(Hy(7,7)h(7)
mentioned, the poor convergence of sefiE® is associated with
the moving singularity on the right-hand side of Hg). This +2H(7,7)8(7)+H(75,7)8 (7)d7

suggests that one possible way to improve the solution is to try to

remove the singularity, i.e., to reduce the problem to that of find- _ ' - .

ing the solution of the original equation with the right-hand side %dT o 9(x,7,t=7)D(H(7, 1)h(7)

free of the moving singularity. This can be achieved if the desired

solution is represented as a sum of two functions such that one of +H(n,7)8(7))dn, (23)

these functions is “responsible” for the singularity and can easily

be determined. Then, the second function satisfies the origiRghere g(x, 7,t) is given by (13). By using the integration by
equation with the right-hand side free of the singularity and, thugarts, the right-hand side of E(23) can be transformed to a form
can be better approximated by the series in terms of the cqfse of delta-functions and derivatives {x,t),

tinuum eigenfunctions. To remove the moving singularity, the

concept of quasi-static solution introduced in Pesterev and Berg-

L L
man ([16]) for the case of a constant moving force is extended tOgy(x,t) = _f 9:(X, 7,0)pH(5,t)d — flde Gu(X, 7.t —7)
the case of varying moving forces. 0 0 0

4.2 Quasi-Static  Solution. The quasi-static solution t L
Wqs(X,t) is defined as XpH(ﬂ,T)dﬂ—j de gi(x,7,t—7)DH(7,7)d 7.
0 0
Wes(X, 1) =F(vt,t) G(x,0t)[h(t) —h(t—L/v)], a7) (24)
whereh(t) is the Heaviside unit step function. In view @), it is S _
evident that this function satisfies the equation The proof of this is given in the Appendix.
Now, we apply modal series representatidh$) and (13), to
Kwge(X,t) =F(X,t) 8(x—vt) (18) evaluate the integrals overon the right-hand side d24). Using

and gives the response of the distributed system due to the mov(l)r%hogonallty relations10), we find that

force F(x,t) if we neglect the inertia of the system.

L N~ D t
4.3 Derivation of the Improved Representation. We will f gt(x,n,o)pH(y,,t)dy,:F(vt,t)z M_ (25)

look for the solution to problen®) in the interval[O,L/v] in the 0 n=1 Nnlp
form

W(X, 1) =W(X,t) +wgg(X,1). (29) Similarly,
Introducing the notation L

,7,t—7)pH(7n,7)d
H(x,t)=F(ut,H)G(x,0t), (20) fo GulX,7t=m)pH(7 m)d7y

we can write the quasi-static solution foxL/v as

Pn(X)@n(v 7). (26)

N A
=F(UT,T)Z R{ L ehnl(t=7)

Was(x,1) =H(X,Dh(1). (21) =)

oo\,
The substitution of19) into (2) with regard to(18), (20), and(21)
results in the equation Using the equatiorjb?un(x)D“gbj(x)dx= —2a,6j,, we find that
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9i(X,7,t—7)DH(7,7)d7y (28) (and to append the equation governing the variatiof\(of if
0 this function is not specified explicitly
N ) Remark 3 The case of many forces traversing the beam can
o ; )
- F(or, T)E R{ LEPSWIEE be treated in the same way as the case of one force. In view of
n=1 fwa\p

jL that case, we simply need to substitute the functitn for vt in

Pn(X)n(v). (7)) Ramarks 1 and 2, solution to E€), for anyt>0, can be written

in the form

Adding integrals(26) and(27), we get

N |
L L WX, =2, Ba()aR+ D, Fi(&i(t),0)
fo gtt(x-ﬂ,t_T)PH(%T)dﬂ"‘ J'O gt(xﬂlft_T)DH(’]:T)dﬂ n=1 =1
N
Nn X)Nn i t )
G4~ 3, Enl0en(G(1)

N 1 X . (29
=Fur,1)Y, RE{ — (\n—2ay) e 7| (X) (v 7) "
=1 liogk, where Eq.(15) for the time-dependent coefficients,(t) now
takes the form
=—gXurt—7)F(v7,7). |
. 1 t
It follows from the last equation and Eg®4) and(25) that an(t) = o foexno—ﬂjzl @n(4;(M)F(4(),1dT.
y Jt 5 B0 a(vt) . L
Wx,t)= | g(x,vrt—1F(or,ndr—F(vtt) >, ————  Note that the use of the extended eigenfuncti¢as]) in the last
0 n=1 Aol equation takes care of how many forces are on the beam at a
N N current timet such that the fact that a certgith force has already
_ R Pr(X)Pn(vt) left the beam or has not come yet is automatically taken into
:nzl (Pn(x)qn(t)_F(Ut,t)Zl =z account since the functiong;({,(7)), j=1,... N, vanish in
n these cases.

whereqR(t) is the real part of integrall5). As can be seen, the ~For a uniform beam, differentiating both sides(29€) gives the
first term represents the conventional series expansion. UsifigProved representation for the bending moment
(19), we arrive at a compact formula for the desired solution N I
N Elwo(x,) =1 2, GO0+ 2 Fi(4i(1) DE
~ n= i=
WOt = 2, Br()aR(t)

=

N ~ ~
Pn(X)@n(&i(1))
N x| Glx, Gi(1) = 2, =,
@n(X)@n(vt) = w2
+Ft )| Gxpt)— >, | (28)
sl (30)
4.4 Discussions and Extensions of the Improved Represen-and the shear force
tation. As can be seen from Ed28), the improved solution N

|
involves no additional computations compared to the conventional — ~m R (r
series expansiofll4). The function in the parenthesis, which may E WX, Elnzl #n (X)q”(t)Jﬂ; Fil&i(V.DE]
be termedtorrection function or dynamic flexibility is easily cal-
culated given that the static Green’s function is known. This func-
tion bears information about the truncated higher modes.
Remark 1 In the above analysis, we considered the time in-
terval[O,L/v], when the force is on the continuum. To extend it (31)
to th_e values of time greater thardiv (when the for_ce leaves the The jumps in the shear force at the poirtét) = ¢;(t) are calcu-
.comlméurfr.),.\t/.ve nefet(a to take lnttot.accolu?t EOth Ul:,'t hstep flljtn‘?t'orl%lted exactly by virtue of the static Green’s function and equal to
jnhe cefiniion of the duasi-static solutieh?), which results In - (4,(1),1), sinceEl( Gl &7 (1, £i(D) ~ Gl &7 (1. £1(1) =1.

N
X| Guod (1)~ 2, =2

bﬁ’(x)?pn(z:i(t)))

p(Hyu(x,t)h(t—L/v)+2H(x,t) 8(t—L/v)+H(x,t) 8’ (t—L/v)) 5 Application to the Moving Oscillator Problem

+D(H,(x,)h(t—L/v)+H(x,t) 8(t—L/v)) ~ The general formulas obtained in the previous section are valid
independent of the fact whether the functidhéx,t) are a priori
on the right-hand side of22). Repeating the above calculationsknown or not(we did not use the explicit dependence of these
for this case and using additionally the assumption that the rigfaifnctions on time or spatial coordinatéf the functionsF;(x,t)
end of the continuum is fixed, we obtain, as could be expected, the a priori known, then the improved solution is obtained as
solution in the form of the conventional series easily as in the case of the constant moving fofics]). The
situation becomes more difficult if we deal with the moving os-
cillator problem. In this case;;(x,t) depend on the response of
the continuum and on other unknowns such as vertical displace-
ments of the oscillators, the equations for which are to be ap-
where gR(t) is again given by the real part d@fl5) if we set pended to(1). For example, for the problem where several con-
F(vt,t)=0 for t>L/v. Equations(15) and (28) can be made servative oscillators traverse the continuum, we h&yéx,t)
valid for all values oft by the use of extended eigenfunctions= —m;g—k;(w(x,t)—z(t)), wherem; andk; are the mass and
introduced in Pesterev, et §ll9] i.e., forx<0 andx>L, $,(x) the spring stiffness of thigh oscillator andz;(t) are the unknown
=0 andG(x,§)=0. vertical displacements of the oscillators, which require additional
Remark 2 Note that none of the derivations employ the asequations. For the problem of damped oscillators moving with a
sumption of constant velocity of the moving force. It can be easilyonstant velocityy along an even beam surface with the profile
checked, that all calculations remain valid if the velocity varies. la(x), F;(x,t) are given by

N
w(x,t)= >, B(0aR(t), t>Llv,
n=1
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6 Numerical Examples

The aim of our numerical experiments was to examine the con-
vergence of the improved series representaf&in for the shear
force distribution and to provide comparison with the solution
obtained through the use of the conventional series expansion.
. i The latter was calculated by the method described in Pesterev and
wherec; are the damper coefficients. Thus, we see that, in Orderé‘érgman[lo]. We refer to this solution as “conventional solu-

calculate the forceB;(¢;(t),t) acting on the beam at the points of;;;™ The solution obtained through the use (@) is referred to

the oscillator attachments, we r_1eed to _know the displacementsag the “new solution.” The static Green’s function of a simply
the beamw(¢;(t),t) at these points, which, as can be seen fro

. ; Yupported beam required {B81) was evaluated by means of the
(29), depend in their turn on the forcdg({i(t),t). Instead of angﬁ/tical formula g?ven in Pesterev and Bergnﬁ;ﬁ].
trying to find an accurate solution to this problem, we suggest theWe considered five damped oscillators with equal masses

following approach. : . . )
. traversing a simply supported damped beam with the velacit
The response and slope can be accurately determined by USINS s gnd the Fr:\r)givalpt?me intervalz 0.2 s. The beam parame);ers

the conventional series expansidm). The high accuracy of cal- . . .
. : - % .are the same as those employed in Sadiku and LeigR6lzand
culation is explained by the fast convergence of the series in tﬁ]e Pesterev and Bergman[8-10,16: L=6m, El/p

case of a beanfid,s are proportional tm?) and is confirmed by _ .

our previous result§8—10)). Since the interaction forces depend. 275.4408_rﬁ/§, m/pL=0.2. We introduced moderatglpropor—
on the beam response and, in the case of a damped oscillatorigf@! damping into the beam model by settidgo =2.0 s (the

the slope of the beam, we suggest to first determine the forces$ijfical value of damping for this beam is equal to 9.1)sand

using the conventional seriggl9]). Then, substitute the interac- dampers in all oscillator models with the damping coefficients

tion forces obtained foF;(£;(t),t) into the improved representa- =2 N-s/m, such that the fourth osc_:lllato_r is overdam_pgd and the
tions (30) or (31) to accurately calculate the bending moment opthers are underdamped. The spring stiffness coefficient&,are
shear force. The program implementation of this approach is ex20, ko=30, k3=40, k;=4, andks=20(N/m). The results re-
tremely easy and suggests the use of the programs implementfi§d to this system are shown in Figs. 1-3. The forces acting on
the earlier methods with the subsequent correction of the solutidh€ beam from the oscillatokgach force is the sum of the oscil-
obtained. The results of our numerical experiments shown in tior weight and the elastic and damping foiciesthe time inter-

next section demonstrate that the new series converges rapiti§l, 0 and 1.8 gwhen at least one oscillator is on the beamere
which substantiates the efficiency of the new representation a¢riculated with the use of the conventional series expansion. Fig-
justifies the use of the approach suggested above in the movitig 1 shows the exact values of the for¢sslid lineg and their
oscillator problem. Since the interaction forces are calculated spproximations by two terms of the seriédashed lings The
proximately, there may appear a question of whether the improveanvergence of the conventional series for the response is so good
series converges to the solution of Ef). This question is easily that, beginning withN=4, all approximations result in the same
answered. Indeed, let the numkerof the series go to infinity. curves and may be considered as accurate. These forces and the
Then, the function in the parentheses(#8) tends to zerdthe time-dependent coefficients,(t) of the conventional series ex-
infinite series in the parenthesis equals the static Green’'s fup@nsion were substituted into E®1) to calculate the shear force
tion), and the improved representati(®8) reduces to the conven- distribution att=0.9 s by the proposed method. Figure 2 demon-
tional series, which is known to converge to the desired solutiostrates the convergence of the new series expansion: the solid and

d
(w(x,t) —z(t))

Fi(x,t)=—mg— ki(W(X-t)*Zi(t))*Cia

—kie(x)—cjve’(x),

-8 L L 1 1 i | 1 1 I

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8
Time

Fig. 1 Forces acting on the beam from the oscillators
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Fig. 2 Shear force distribution at  t=0.9s: exact solution (solid line ) and solution
by two terms of the new series  (dashed line )

dashed lines depict the accurate solution and its approximationdxpansion were sufficient to get nearly exact solution. On the
two terms of(31), respectively. Beginning wittN=4, the curves other hand, the conventional series is not able to provide a good
corresponding to different approximations withterms of series approximation for the shear force: even with 20 terms, the solu-
(31) coincide. Figure 3 demonstrates the convergence of the cdion obtained is still far from the accurate one. Although not
ventional series and shows the accurate solufsmiid line) and shown, results using the new series also converge faster than those
the approximations obtained by using @M&sh-dotted lineand 20 by the conventional series in the calculation of the bending mo-
(dashed ling terms. The difference in the convergence of twanent. For instance, the bending moment distribution in the neigh-
series is easily seen and self-explanatory. borhood of the location of the moving force is poorly represented

The results presented show the superiority of the new represeg-the conventional series but is accurately calculated by the new
tation (31) over the conventional one: two—four terms of the neweries.

10’-

(x,0.9)

Elw
XXX

-2

Fig. 3 Shear force distribution at  t=0.9 s: exact solution (solid line ) and solution
by the conventional series with 10 terms  (dash-dot line ) and 20 terms (dashed line )
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7 Conclusions Rewrite the third integral in the right-hand side (8R) as

An improved series expansion of the solution to the problem of [L ¢
vibration of a proportionally damped beam subject to an arbitrary f (O 7.t 7)pH(7,7))|,=0d7n
number of moving loads has been derived. The forces acting on” °
the beam may depend on time and spatial coordinate and are
allowed to move with different and arbitrarily varying velocities.
The improved representation is valid even if the moving forces are
not a priori known, which made it possible to apply it to the (33)
problem of multiple moving oscillators. The convergence rate of, . ) )
the new expansion is considerably better than that of the converince the left end of the continuum is assumed to be fixed,
tional series expansion. G(7,0)=G(0,7)=0, and, hencei(7,0)=0. Thus, the first inte-

The advantages of the new technique are most pronounc¥@! on the right-hand side ¢83) vanishes, and32) reduces to
when the term-wise differentiation of the response solution is re- t L
quired to calculate the shear force distribution, which is a discof¥(x,t)=— f drj ag(x,p,t—71)pHu(7n,7)dn
tinuous function. The jumps in the shear force at the points where 0 0
the forces are applied are explicitly and accurately taken into ac-
count by the quasi-static solution.

Numerical results have been presented that clearly demonstrate
the improved convergence of the new representation. Based on
these and other results, not included in the paper, we can state
that, even with 25 terms, the approximation by the conventional
series is worse than the three-term approximation by the new
method. Note that the number of first-order ordinary differential (34
equations required to solve the multiple moving oscillator prolEhanging the order of the integration in the first two integrals and
lem is equal to 2l+1), wherel is the number of the oscillators. taking the internal integrals by parts, we obtain
Thus, the difference in the computational complexity of the ;
methods based on the improved and conventional series is f
considerable. 0

L

L
= J:) 9i(x, 7,t)pH(7,00dn+ fo g(x,7,t)pH(7,00d7.

t L
*jdrf g(x,7,t—7)DH(n,7)dn
0 0

L

L
—fo g(x,7,1)pH(7,00dn— fo g(x,7,t)DH(7,00d7.

g(X,n,t—7)pHy(n,7)dr

= g(X, W:O)PHt( U:t) - g(X, ﬂvt)th( 7/10)
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+jogtt(xvnrt_T)pH(an)dTv (35)
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0

Appendix =g(x,7,00DH(7,t)=g(x,7,t)DH(7,0)

Proof of Representation(24). Using the well-known proper-

ties of the functiond(t), &(t), andd’(t), we get (36)

t
+j 0y(X,7,t—7)DH(7n,7)d7.
0

The fourth addend on the right-hand side of E85) vanishes

t L
W(th): - f7 deo g(X, 7]:t— T)P(Htt( ﬁ,T)h(T)
+2H(n,7)8(7)+H(n,7)6'(7))dn
t L
[ [ axni- ot
+H(n 1d(7)dn
t L
:_JOdTJO g(xvﬂ‘t_T)PHtt(ﬂ:T)dﬂ
L
—ZL g(x,7,t)pH(7,00d7
Ly
+La—T(g(Xm,FT)pH(n,T))IT:odﬂ
t L
—fdrf g(x,p,t—7)DH(7,7)d7y
0 0

L
- fo g(X, nvt)DH( ﬂlo)dﬂ

(32
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sinceH(7,0)=0. The first addends on the right-hand side$3%)
and(36) are equal to zero sin@yx, »,0) is zero. Substituting the
resulting equations int@34), we get(24).
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Due to the complicated deformations occurring in thin-walled multicell beams, no satis-
factory one-dimensional beam theory useful for general quadrilateral multicells appears
available. In this paper, we present a new systematic approach to analyze the coupled
deformations of torsion, distortion, and the related warping. To develop a one-
dimensional thin-walled multicell beam theory, the method to determine the section de-
formation functions associated with distortion and distortional warping is newly devel-
oped. In order to guarantee the singlevaluedness of the distortional warping function in
multicells, distortional shear flows have been utilized. The superior result by the present
one-dimensional theory is demonstrated with various examples.
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1 Introduction tion of multicell beams by extending the method used for single-

Thin-walled closed beams are very useful structural membersaj%;l beams([8]). Then a procedure to determine the section defor-

Vil aut bil d industries due to their hih rigid! tion function for distortional warping is presented. In deriving
civil, automogbilé, and aerospace Industries due to their Nigh Naigzy gistortional warping function, the importance of a distortional

ity and lightweightness. Though the analysis of open sectiQq,; fiow is addressed. The numerical analysis is carried out by

beams Is quite well kr!OWf“'Z])' the apaly5|s of closed .seCt'Onﬁievelopingco-finite elements based on the present approaches.
beams is still of a major research topic because of their compli-

cated deformations such as distortion. The analysis related to dis-

tortilon_an?l‘ tdhi_StOFﬁCl)lnzl Vl\/afpijn% is, perhaps, the key issue in e Fjeld Approximation in Single-Cell Box Beams
analysis of thin-walled closed beams. . . . L

The fundamental treatment on this subject goes back to Viasoy'/€ review underlying displacement approximations for the

[2], KFistek[3], and Wright[4]. Boswell and Zhang5] discussed analysis of thin-walled S|m.ply connepted closed. beams, which
sectional deformation functions for distortion and distortionéﬂa"e been proposed by Kim and Kif8,9]. The displacement
warping for monosymmetric cross sections. Balch and St&dle leld for multiply connected or multicell sections, which will be
analyzed the local effects associated with warping and distortigﬁe major subject of the present work, is presented in the next

near the T-joint of thin-walled closed beams. Hsu ef 3].used section. . . .
. . . The shell displacements of a point on the cross section contour
an equivalent beam-on-elastic-foundation method to account fg

the distortion deformation effect of the cross section with rigid ogfe expressed in terms of the norng((s,z), tangentialug(s,z)

flexible diaphragms. Recently, the present autli8p develop a
new approach to determine section deformation functions for d
tortion and distortional warping of quadrilateral cross sections.
beam-frame model approach for general cross sections is also
mulated ([9)) to find distortional functions for generally shaped 1 shell displacement can be expressed as the sum of beam
cross sections. The importance of the consideration of the shg@fqrmations and corresponding sectional deformation shape
flow is discussed for the singlevaluedness of the distortional warpctions. The beam deformations in consideration include rota-
ing function([9,10)). Jansson[10] used local axial equilibrium to tion 6(z), torsional warpingU®(z), distortion x(z), and distor-

derive differential equations for the determination of the distot: X : .
tional warping and shear distributions. Razaqpur andi1li,12] EE;Zkgﬁ{;;ncggsézg'e;:gﬂre 2 shows the beam deformations of a
performed a rigorous study on multicell box beams, but their Once the corresponding section deformation sha@ are

methods appear difficult to extend for the analysis of arbitrar”éfetermined one can express the shell displacemefiBz8)
shaped multicell beams. '

nd axialu,(s,z) components as in Fig. 1. In Fig. 1, the distance

ON; from the shear cented to the pointN; of theith edge is
enoted byr;. The normal passing through the shear center de-
ihes the poinlN; . The length of each wall is denoted by, and

€ distance from théth corner to the poinN; by |; .

The aim of this work is to carry out the one-dimensional analy- ug(s,z)= l//g(s) 0(z) + yX(s)x(z) (1a)
sis of coupled deformations of torsion, distortion, and warping in o N
general multicell box beams. To this end, we propose a systematic Un(8,2)=¢n(8) 6(2) + Y(s)x(2) (1b)
method to determine the section function for distortional deforma- 0
uy(s,2) =95 (s)U(2) + ¢ () UX(2). (10)
To whom correspondence should be addressed. In Egs. (1), only nonvanishing section deformationgs) are

Contributed by the Applied Mechanics Division o AMERICAN SOCIETY OF  considered. The section shapes associated with the rotétin
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED  5ra

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb-

ruary 8, 2000; final revision, October 4, 2000. Associate Editor: R. C. Benson. 4 —r. 0 - 1.

Discussion on the paper should be addressed to the Editor, Professor Lewis T. 'ps(s) Fi, ¢n(s) ||+S- (2)
Wheeler, Department of Mechanical Engineering, University of Houston, Houston, For simply connected or single-cell sections, the sectional de-
TX 77204-4792, and will be accepted until four months after final publication of the . Ul . . X ] .
paper itself in the ASME GURNAL OF APPLIED MECHANICS. formation shapef,, associated with the torsional warping is
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Fig. 1 Displacements at an arbitrary point of a thin-walled beam
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Fig. 2 Section deformations of a rectangular box beam for
warping, (b) rotation and (c) distortion. Dotted lines denote the
deformed shapes. In this case, no distinction between torsional
and distortional warping deformations is needed as they are
identical.
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@

S
wg%s):—fo(ri—rn)dswg; for the ith wall.  (3)

The constanwgog in Eq. (3) is selected to satisfy the singlevalued-
ness condition

fﬁ Y (s)ds=0
andr,, is defined as

2A

ry=———
%ds
[+

where the area enclosed by and the total length of the coitour
are denoted byA and$-ds, respectively. The sectional deforma-
tion shapesyi(s) and @JX(S) by Kim and Kim|[8,9] are some-
what complicated even for simply connected sections, and thus
they are not repeated here. However, the next section will discuss
these shapes for multiply connected sections in detail.

On the assumption that the thickness of the beam is much
smaller than other sectional dimensions, the three-dimensional
displacementsi,, , Ty, T, may be written as

Tn(N,S,2)~Un(S,2) = P5(S) 0(2) + () x(2)

~ _ dun(s,2)
Us(N,S,2)~Uuy(s,z)+n s
dyi(s)
~Y5(S)X(D)+ P(S)X(D) +n—1—x(2)

T,(n,s,2)~Uy(s,2)= ¥ (U (2) + y (9 UX(2).  (4)

The normal coordinate in Eq. (4) is measured from the middle
line of each wall. Nonegligible three-dimensional strain compo-
nents obtained from the displacement field in Etj.can be found
as

MARCH 2001, Vol. 68 / 261



Jqu, Lo dU%z) . dUX(2) (4%, 9%, ,4%). Though the present work is limited to commonly
€= W (S)—q— TV (8) —5,— (5a)  used single-layer multicells, the approach developed in this work
can be extended to multilayer multicells.
u? ux To determine the distortion functions, the following conditions
ezszl(ﬂz + %) ~ E|:dl//z (s) %(z) dyz () UX(z) must be satisfied:
2\9s  9z) 2[ ds ds (i) Corner displacement conditiorig-plane components
At corners where two walls joisee Fig. 8))
o, . do(2) N dx(2) _
+9s(s) a7 T3 (50) l/’)s(i|si=bi:¢§j|sj=0005(aj—ai)—¢)n(j|sj=05|n(aj_ai) (93)
@, & and
€555 N g2 X2 (50) Wil b, = |50 SN — ar) + gk |5 o Cog @ — ). (9b)
The nonvanishing stress components are simply At corners where three walls joifsee Fig. 80))
E ¢§i|si:bi: l/’é(j|sj:o cof aj—a;) — ‘ﬂ?ﬁj‘s,zo sin(aj— a;),
Uzzzl__1}2(522+ sts)- (68.) (103.)
E d’l)'1(i|si:bi:'r//§j|sj:0 sin(aj— a;) + ll/?](j|sj:0 cog @~ a;)
O'ss:mz(fss+ V€L, (6b) (100)
and
057~ 2Gés, (6c) Pils=b,= P& s =0 COL a— i) = Pl s, =0 SiN(a— @),
Integrating over the beam cross section the following expres- (20c)
sion for the system potential enerdl )
Y P o Phils =b, = Vs, =0 SiN(a— ai) + ¢l -0 COL e — ).
I lf dv f T, + qG.)dV. 7 (10d)
=5 | oij&dV—| (pU : , . .
2 | “uici (PU,*q0s ) In Egs.(9), (10), a; is the angle between the horizontahxis

and the tangential direction of tlith wall. Note that Eqs(9), (10)
provide 8V conditions for arM-cell section.
(i) Zero virtual work conditions The stress field by the dis-

one can find the potential energy in one-dimensional f¢see
[8,9,13 for the explicit expression for simply connected sectjons

1 tortion deformation should not produce any virtual work under
[ 6,x,U% ux]= —f F(z0,x,U%U¥X, --dz virtual rigid-body rotation(see Eq(11a)) and displacementsee
2
Egs.(11b,9).
3 Section Displacements in Multicell Box Beams J’ (S1dA zr": T 11
r-yX(s)dA= r-ylbit=
The previous section summarized how three-dimensional dis- vs(9) =] ysibi (112)

placements can be obtained from the section deformation shapes
Y(s) in single-cell box beams. In this section, we present the
section deformation shapes for multicell box beams. In particular,
we focus on the analytic derivation of distortion and distortional
warping deformation shapes for multicells, which is the main con-
tribution of this work.

3.1 Distortion Functions #X(s), ¥X(s). Extending the
theory to determine the distortion functions for simply connected
closed beamg[8]), we present the technique to determine the
distortion functions for multicell box beams. The present study y

Li

will be given for single-layer multicells composed of general
quadrilateral cells.

In determining the distortion functions, a two-stage procedure
is employed. In the first stage, the corner rigidity resisting the
distortional deformation is not taken into account; thus the cross
section of a box beam is assumed to deform as hinged links where
corners are regarded simply as hinges. In this setting, the distor-
tion can be described by the amount of rigid-body tangeni#&)) (
and normal () translations and a rigid-body rotation)) of
the ith wall. The normalyX;(s;) and tangentialy¥(s;) displace-
ments of thath wall can be written in the following form:

(@)

v(s) =
Xi(si) = gt (si = bif2) s (8)
N y wall j
0$Si$bi, |:1,m \
X
whereb; denotes the length of thi¢h wall andm s the number of wall i Corner

walls of the multicell section. It is worth noting that the number

of walls for a cross section having cells is 3V + 1. Therefore Fig. 3 (a) A corner at which two walls meet and  (b) a corner at
there are 8 +3 unknowns since each wall has three unknownshich three walls meet

262 / Vol. 68, MARCH 2001 Transactions of the ASME



m ( JX \ 1
f cosa- zﬁfg(s)dA:E cosa;- Yfbit=0 (1) —il (1)
=1 Kez -1
- Kés 0
. ) — X =( —1) XKy, 12
f sina- yX(s)dA= D, sine;- yXbit=0 (11c) < gz“ > 1 ! (12)
i=1 65
| . . A
Note thatr in Eq. (11a) represents the rigid-body rotation field EX L 0
and cosx and sina are used to express the resultant forcesty \ 707)
in the direction of thex andy-axes. The conditions stated as Egqsand
(11) may be viewed as the orthogonality conditions of the distor- F—N 2
tional deformation with respect to three in-plane rigid-body mo- &
tions. Since Eqs(9) through (11) give 8M +3 conditions for Exz —10
9M + 3 unknownsM different distortion functions are possible. —)S( ~10
CASES STUDY: Two-Cell Box Beam. To understand the na- Xs3 10
ture of the distortion functions, we consider a specific example of L =< 10( X Ky,
a two-cell box beam shown in Fig. 4. Sinbé=2, there will be -
two independent distortion functiong® and ¢°. Using Eq.(8) 7S5 10
and conditiong9)—(11), one can find Pl 0
\ ¢§7J
)\ 2
PR ﬁu(l ( 5)
2% A2 _5
— 10 R
L I Y Xns 0
12(3 0 { _?1(4 ={ 5 } XKy,
Yy = 0 XKy, s —5
s I 0
— 10 —;6 L 0
_56 - \ ll’nu
IS r— 1\ 2
© 20 723
3 Vi 1
Kés -2
> Wiap = 1) XKy, (13)
° s L
() ! — -2
K)n(l — g wze -2
X A
ﬁnZ 0 \ l//)§7J ) ’
X
Xn3 whereK; andK, are arbitrary constants and will be set equal to 1
Wy ={ 5 ) XKy, without loss of generality. The deformation shapes corresponding
7 3 to ¢! and ¢? are plotted in Figs. @) and (b), respectively. It is
—;5 5 apparent that the deformation shapes shown in Figs.dhd (b)
ﬁne > alone violate the slope continuity at corners. Since the use of these
L ¥7) 3 distortional deformation shapes results in serious distortional stiff-
0 ness reduction, some modifications must be made; both slope and
moment continuities will be imposed at the corners.
0 To this end, we replace the normal displacemgfts) in Eq.
(8) by cubic polynomial functions as
Bi(0)+ﬁi(bi)+2J§i 5 23i(o>+ﬁi(bi)+3@§i 5
Contour 1 Contour 2 Ni(s)= b2 i b. Si
I I
® / ® / D — b
Y +ﬁi<o)si+¢)§i?l+%(i (14)
5 4
b 6 ‘ 7 3 z where new variableg; o and,Bi(bi) represent the amounts of the
i 5 slope of theith wall at both ends, which are defined as
— diy;
@SI 1 5 2 © Bi(()):d_sr,”
| b 5;=0
b =10 mm dyi
Bib)= d_sm (15)
s;=Db;

Fig. 4 A typical two-cell box beam
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T CIT
T

()

Fig. 6 Two independent distortion modes satisfying the rota-
tion continuity and moment equilibrium at corners

(b)

Fig. 5 Two independent preliminary distortion modes. These
modes do not satisfy the rotation continuity and moment equi-

librium at corners. is clear that the consideration of the corner condition is very im-

portant to obtain the correct in-plane distortional stiffness of box
beams.

] ) 3.2 Distortional Warping Function #Y"(s). There are
Note thatyr;(s;) in Eq. (14) are selected to yield exactly the sameome reportg[10,11)) discussing how to find distortional warping

corner displacements as those by E): functions in some cross sections.
b b Nonuniform torsion(see[1]) produces an additional shear flow
X(0)= g+ E'Mi L ki(b) =g 5‘% . contributing to the twisting moment. This additional shear flow

may be called a distortional shear flow, and the negligence of this

Furthermore 4, and ¢/ in Eq. (14) are the constants that haves_hear\}‘\l/ovy Wogld yield incorregt_ dist_ortiolnakl] wa:c?ing_ deforkr]na-”
; tions. We introduce a constant distortional shear flow in each ce
- X (s
gﬁteonmi?itsgwnsﬁi:fi Ittheget):oﬁ\%j?t)ib-rr{gfrt?lfrcc))rlfgl;ﬁn(ﬁi)fg: Er?y(\%:l) in order to guarantee the singlevaluedness of the distortional
warping function.
ues of Bj(g and,Bi(bi).

. - ) If we denote the distortional shear flow loy in a single-cell
To determine the remaining unknowf) and f,) in E. box beam, the distortional warping functiaf}’* may be found
(14), the slope continuity and moment equilibrium conditions ar ’ ping Y

imposed at each corner. om
For corners where two walls megdee Fig. 8a)) g(z) auY"  gu¥ 8
= +—.
Bitw) = Bij(o) (16a) Gt os oz
MP)s _p =MPs g (16a) In Eqg. (18), uf is the tangential displacement by the distortional
R _ deformation, which has already been given ag(s,z)
and for corners where three walls mésee Fig. &) =yX(s)x(2) (see Eq.(1a)). Likewise, the axial displacement
Bi(bi)=ﬁj(0) (17a) u‘ZJX(s,z) may be written as
Bio)=Bxo) (1) u'(s,2) =47 (s)UX(2). (19)
Mib|si=bi:M]b|sj:0+ME|sk:O (170) To determineyY"(s), the shear stress flow¥(z) must be

found first from the single-valuedness of the axial displacement
whereM? is the(in-plang transverse bending moment defined aﬁ‘ZJX(s,z):

Et? d?yi(s)

MP(s)= 2 — o x auy”
Y12 de 0= ffﬁdug (s,2)= 3@ ds
c s

Since there are M slope continuities andM +2 moment equi-

librium conditions for 2n=6M+2 unknowns Bj(,Bi(,)). all _ 9@ jg ds dx(2) JX(s)ds

of the unknowns are uniquely determined. G ct dz c ° '
CASE STUDY: Two-Cell Box Beam. For the case of the

two-cell box beam shown Fig. 4, the modificationygf; using Eq.

(14) yields the results shown in Fig. 6. From Fig. 5 and Fig. 6, it Rearranging Eq(20) for gX(z) yields

(20)
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§C¢/§d8 dy dy
g¥= —dsE:GFXE (21)
ct
where
Ox
rx= s (22)
5
and
Qx= écz//gds. (23)

Using g¥(z) expressed as E@21), one can rewrite Eq18) as

X ux b%
aui:‘,z) _ dlﬂ;s(s) UX(z)E(FT— %(S))¥. (24)
With UX(z)=dx(z)/dz, one obtains
ux X

SALBANT (29)

and integrating Eq(25) yields

s[T'x
97 (s)= f ] {T— Y(s) |ds+ g (26)

Contour J-1  Contour J Contour J+1
R T e R T e T
..... > > > , .,

Fig. 7 Shear flows of three adjacent cells J—1, J, J+1 of a
multicell cross section associated with distortion and distor-
tional warping

in three adjacent cellgéhe J—1th, Jth andJ+ 1th cellg are de-
noted byqj_,, gy, andqj,; .

Applying the singlevaluedness condition expressed ag ).
around thelJth cell yields

ds ds
0=G ¢ du,=-aj_, T TW P A
Cy Ci-13 Cy

ds dx(z
Caa+1 z Gy
ds ds
=—0dj_1 T TN T
Ci-1 Gy

dx(2)

ds
—a¥i, < G, (28)
Cia+1

The integration constan,&gox can be determined from the con-In Eq. (28), the subscript denotes the quantities associated with
dition that the virtual work by the distortion warping stress due tthe Jth contour, andc, | represents the integral along the wall

the virtual extensional axial displacement must vanish:

jﬁcwé’x(s)ds:o. @7)

common to theJ—1th and Jth cells. Writing Eq.(28) for J
=1,2,---,M and putting the resulting equations in matrix form,
one may obtain

dx
A similar procedure can be applied kb-cell box beams. In this C-g¥=G EQX (29)
caseM shear flows defined in each bf cells must be considered.
In a typical multicell cross section shown in Fig. 7, the shear flowshere
|
B é ds j ds 0 0 0 b
C1 t Ci2 t
J ds ds J ds 0 0
Ca1 t Cz t Cos t
oo .
ds ds ds ' (30)
0 - T T~ — 0
Co—1y S Caa+1
ds ds
0 0 0 T —
. Cm-1m Cm = d
I
q*={a¥.a}. .oy}’ (31) Where
QO ={01,0%, -, Q" (32) I'X=(C) Q. (34)
Inverting Eq.(29) for g¥ yields i ) ) .
Sincel'¥ can be determined for all cells, the distortional warp-
qX:GC*lﬂXﬂzGr‘Xﬂ (33) ing function z/xé”(s) can be found by extending EqR6) to the
dz dz case of a multicell section. Referring to Fighg one can find
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S

Y9 (sp) = J |

I‘X

V(s |ds+u (353)

and

N (s0= f k
So

In order to determine the mtegratlon constan{rt#o l/fzko Eq.

(27) and the continuity conditions oﬁz at corners must be used.
CASE STUDY: Two-cell Box Beam. We reconsider the two

X—_Tx

l—‘I J
— PX(s) |ds+ g

(3%)

cell box beam shown in Fig. 4 in order to give the distortional
warping function explicitly. In this case, there exist two distor-

tional warping functionsngl, ngxz corresponding to the two dis-
tortion functionsy*, 42 Using ¢ (with K;=1) in Eq.(12),
Q7 are determined as

01— § uas= b T+ e e
1

20 10
=0+ - -10+0+ - -10=100

3 3 (36&)

0= § yitds= g+ Wos+ Wby A5
2

10 20
% -10+0- % -10=-100. (38)

0_

The matrixC in Eq. (29) is simply

40 10
Tt
=l 10 a0 37
ottt
Substituting Eqs(36) and (37) in Eq. (34) yields
rpt=2t, Tjl=-2t. (38)

Oncel¥ are determined, the distortional warping functigf
can be obtained from Eg&35). The explicit expressions for each
wall are given below.

“ s FXl
1//31 (Sl):f . 'J’Xl (s1)
0

UX1

51+ ’ﬁzo

UX1
+ ‘/’zO

S, FXl
W (sp)= f
0

2
T
=—2s,+2b+ %"

:231 0<51 blfb 10

ds,+ % '(by)

0

1-')(1

——— Xt dsy+ ¢ (by)

Yo (Sg)= f
0

4
ux1
383—“_1/;20 <

=

=

=

0 bs=b

S3

FXl

0 | dsit g (bg)

YU (sy) = f )
0

(URSY

—25;+ = b+1//
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uX1 _ % FXl uXi
s (S5)= __1// dss+ iy, (bg)
0
=255— b+ byt 0=sg=<bg=b
e FX:L
Vis (56)= f (Tl‘ 5 |dss+ ks’ (bs)
0
4 uNL
- 356+ b+¢ 0$36$b6:b
s TXi—rx
v(s)= f (% v |ds+ gy (by)
0
8 ux
:7§S7+2b+17[/ O$S7$b7:b
The integration constan;eUX1 from the condition stated by Eq.
27 is
20
w;JOXl_ 3 .

Repeating the same procedure for the second distortional warp-
ing function, one can find

s 20 200
(//zl (sl)zgsl_T 0<51 blfb 10
20
Y (sp)= 352 0=s;<by=b
- 40 200
Yz (S3)=— 5 Sst = 0=sg=bg=D
s 20 200
Yo (S4)= RS 0<s,=<by=b
‘/IESXZ(SS): 355 O$55$ b5—b
e 40 200
V6 (Se)=— 3 St 3~ 0<Se=bg=b
U (s7)=0 O=s;<b;=b

Figures &) and (b) show the first and second distortional
warping functions, respectively.

3.3 Torsional Warping Function. Although the torsional
warping is well known(see[14]), we repeat the result here for the
sake of completeness. As in the case of the distortional warping
functions, one can form the following matrix equation for the
torsional shear flovg?,

C f’—Gdeﬂ
4=54;

whereC is the same matrix as defined as E8Q), and

.
QB={ é rds,'--,¢ rds] .
c; Cu

Replacing ¢, Q) by (g%, QY), the analysis carried out for the
distortional warping functions applies directly in determining the

torsional warping functions{/lj@(s).

(39)
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F F=1x10°N
Thickness = 1 mm

IlOmm

@
clamped
F F 2F
o) ®
Fig. 8 Two distortional warping functions corresponding to Fig. 9 A two-cell box beam subjected to (&) a couple and (b) a
the distortion functions shown in Fig. 6. Numbers denote the set of three concentrated loads
relative magnitudes of axial warping displacements.
-0 —  Plate
. E 77777 Present (Ne=16)
4 Numerical Examples = e — Present (Ne=8)
For numerical calculations, &%continuous piecewise-linear | T "7 77 Present (Ne=4)
one-dimensional finite beam element is implemented using the BTk
theory presented in the previous sections. In the case of two-cell
beams, the nodal displacement vectbrhas five degrees-of-
freedom: Uy
d'={6 U? x, Ux y, UX3}, 2E-07
The rotation and the torsional warping degrees are denoted by
andU? and the two distortion and distortional warping degrees
are denoted by x;,x,) and U*1,UX2), respectively. Since the
procedure for the finite element implementation can be found in -SE-07F
i 1 i 1 1 1 1 1
Kim and Kim[8,9] the detailed procedure is skipped here. 5 = 5 5 500
Example 1 Two-Cell Box Beam Subjected to Various Load Axial coordinate (mm)
Conditions. We consider a straight two-cell box beam subjected
to a couple(Fig. 9a)) a_nd a set of three point Io_adEig. 9Ab)). _ z 0
Throughout the numerical examples, the magnitude of the point ) Plate
loadF will be taken simply as X 103N, and Young’s modulus |  >~_ = —~-—- Present (Ne=16)
and Poisson’s ratio are taken as 210" N/m? and 0.3, respec- -1E-071
tively. The vertical displacements, along A due to the loads
shown in Figs. €a) and (b) are plotted in Figs. 1@) and (b),
respectively. The results with varying numbel&) of the present 2E-07 |
beam elements are compared with those by plate elements. Figure
11 compares the present one-dimensional results and the plate Uy
finite element results for the distribution of the transverse bending 3E07
stressogg atz=175 mm anch=t/2 for the load case of Fig.(9).
For the plate element analysis, IDEAR5]) was employed and
the convergence of the plate element result was confirmed. As the . -
number of the present beam element increases, the present one- .

. . . 1
dimensional solution converges well to the plate element result. 0 50 1(')0 150 200

. . Axial coordinat
Example 2 More General Cross Sectionsn this example, xial coordinate (mm)

we consider more gen.eral cross sections of two-ce!l box bea'r& .10 The vertical displacements  u, along corner A. The re-
Figure 12 shows the dimensions of a monosymmetric trapezoidglts (a) and (b) correspond to the loading cases shown in
section and the vertical displacemerjtat pointA. Other geomet- Figs. 9(a) and (b), respectively. The number of the present
ric and boundary conditions except the section shape are the saman finite elements is denoted by N,
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Fig. 11 The distribution of the transverse bending stress
(solid lines ) are compared with the finite element results

L2E-07F thickness = 1 mm , 7
é FlO mm 10 mm F 4 /
T-—» . 4
= y
g /
8E-08 - \ = / 7
7
A7 J/
Uy Smm 5mm /
4E-08 Plate
~~~~~ Present (Ne=16)
0 1 1 1 ]
0 50 100 150 200

Axial coordinate (mm)

Fig. 12 The vertical displacement

u, along corner A of a trap-
ezoidal two-cell box beam under a couple

(beam length

=200 mm)
thickness = 1 mm
g F 10 mm 20 mm I‘: 7 N \
= ) y \
£ P v
6E-08 - & y )
—_ Y i\
Uk A /'C I h
10 mm ' 10 mm [ y ¥
p \
4E-08 |- J \
7 \
/ \
/ |
S/ — Plate
2E-08 } B Present (Ne=16)
p S
V4
0 1 1 1 1
0 50 100 150 200

Axial coordinate (mm)

u, along corner A in an

Fig. 13 The horizontal displacement
(beam length

unsymmetric two-cell beam under a couple
=200 mm)

as those in Example 1. An excellent agreement between the
present one-dimensional result and the plate element result is ob-
served. We also treat an unsymmetrically shaped two-cell beam
subjected to a couple as shown in Fig. 13. The horizontal dis-

o at z=175mm and n=t/2. The present results
(dotted lines ) by IDEAS.

Table 1 The eigenfrequencies of a freely supported two-cell
box beam whose cross section is shown in Fig. 9. (N, denotes
the number of elements. )

Plate Classical Present Present

Mode (Ne=3500) Theory (Ne=20) (Ne=40)
1st torsion 5674.8 Hz 5987.6 Hz 5693.9 Hz 5689.6 Hz
1st distortion 8775.1 Hz N/A 8807.5 Hz 8786 Hz
2nd distortion  9986.4 Hz N/A 10111 Hz 9999.5 Hz
3rd distortion  10790.6 Hz  N/A 10817 Hz 10817 Hz
4th distortion 11385.6 Hz  N/A 11398 Hz 11394 Hz
5th distortion 11769.4 Hz N/A 12330 Hz 11958 Hz
6th distortion 12893.7 Hz  N/A 12418 Hz 12418 Hz
7th distortion 13697.9 Hz N/A 13164 Hz 13164 Hz

placementu, at point A is also plotted in Fig. 13. This cross
section is seldom used in practice, but it serves to confirm tiggy. 14 (a) The fourth and (b) the seventh distortional eigen-

validity of the present approach.
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modes of a two-cell box beam with a freely supported condition
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It is remarked that the present one-dimensional theory acdadeferences
rately predicts the local end effect near the loaded end. The diSq) Timoshenko, s. P., and Gere, J. M., 1958gory of Elastic Stability2nd ed,
placements shown in Figs. 10, 12, and 13 vary rapidly at the end.  McGraw-Hill, New York.
If one does not consider the distortional deformation, the linearf2] Viasov, V. Z., 1961Thin Walled Elastic Beamssrael Program for Scientific
displacement distributions would appear in these figures. Se?g] Translations, Jerusalem.

: . : Kristek, V., 1970, “Tapered Box Girders of Deformable Cross Section,” J.
Balch and Steel6] for more rigorous analysis of end effects in Struct. Div. ASCE 96, No. ST8, Proc. Paper 7489, pp. 17611793,

thin-walled closed beams. [4] Wright, R. N., Abdel-Samad, S. R., and Robinson, A. R., 1968, “BEF Anal-

. . . ogy for Analysis of Box Girders,” J. Struct. Div. ASCE4, No. St7, pp.
Example 3 Free Vibration Analysis of a Two-Cell Box Beam 1331/9_1743_y = PP

We perform the vibratio_n anal_YSiS of a tWO'Ce“ box beam with its [5] Boswell, L. F., and Zhang, S. H., 1984, “The Effect of Distortion in Thin-
both ends free. The dimensions and material properties of the Walled Box-Spine Beams,” Int. J. Solids StrucQ, No. 9-10, pp. 845-862.
beam are the same as those used in Example 1. The lowest tdel Balch, C. D., and Steele, C. R., 1987, "Asymptotic Solutions for Warping and
sional and distortional eigenfrequencies of the beam are listed in DiStortion of Thin-Walled Box Beams,” ASME J. Appl. Mectb4, pp. 165—
Table 1. The present results show an excellent agreement Witfy; s, v. 1., Fu, s. S., and Schelling, D. R., 1995, “EBEF Method for Distor-
those of the plate finite elements while the classical torsion theory  tional Analysis of Steel Box Girder Bridges,” J. Struct. Div. ASCE1, No.

by St. Venant cannot predict the distortional eigenfrequencies. 3, pp. 557-566.

Figure 14 shows the fourth and seventh distortional eigenmodet] Kim. J. H., and Kim, Y. Y., 1999, “Analysis of Thin-Walled Closed Beams
of the two-cell box beam With General Quadrilateral Cross Sections,” ASME J. Appl. Me@8,, pp.

904-912.
. [9] Kim, J. H., and Kim, Y. Y., 2000, “One-Dimensional Analysis of Thin-
5 Conclusions Walled Closed Beams Having General Cross Sections,” Int. J. Numer. Meth-

; : : : : ; ; ods Eng.A49, pp. 653—-668.
Section deformation functions associated with distortion anﬁlo] Jansson, J., 1999, “Distortional Warping Functions and Shear Distributions in

distortional warping for general multicell beams were presented. ™ 1y, walled Beams,” Thin-Walled Struct33, pp. 245-268.

The distortional shear flow was utilized to derive the distortionaf11] Razagpur, A. G., and Li, H., 1991, “Thin-Walled Multicell Box-Girder Finite
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Hysteresis Behavior and
Modeling of Piezoceramic
X-zhou ¥ Actuators

A. Chattopadhyay

Mem. ASME A new theory is developed to model the hysteresis relation between polarization and

electric field of piezoceramics. An explicit formulation governing the hysteresis is ob-

Department of Mechanical and tained by using saturation polarization, remnant polarization, and coercive electric field.
Aerospace Engineering, A new form of elastic Gibbs energy is proposed to address the coupling relations between

Arizona State University, electrical field and mechanical field. The nonlinear constitutive relations are derived from
Tempe, AZ 85287-6106 the elastic Gibbs energy and are applicable in the case of high stroke actuation. The

hysteresis relations obtained using the current model are correlated with experimental
results. The static deflection of a cantilever beam with surface-bonded piezoelectric ac-
tuators is analyzed by implementing the current constitutive relations. Numerical results
reveal that hysteresis is an important issue in the application of piezoceramics.

[DOI: 10.1115/1.1357168

Introduction strain. Further study on thermodynamic energy and invariance

Piezoelectricity refers to the relationship between pressure difguirements was performed by Chowdhury ef(8].to investi-

electricity that exists within a unique family of materials, calle@@t€ nonlinear elastic dielectrics including polarization gradient
piezoelectric materials. Piezoelectric materials, especially PZT &fects. One-dimensional domain switching was studied and a rate
ramics, have received considerable attention in the past decaded¥y of the effective aligned dipoles was proposed by Chen and
their wide applications to augment stability and control vibratioontgomery[9]. Chan and Hagoof#] and Ghandi and Hagood
([1]). Traditional studies of their applications in smart structurds.0] studied polarization variation by using the method of energy
are based on linear piezoelectric mo¢&,3]) which implies both and energy barrier. The marcolevel approach combined with re-
low electric fields and low mechanical strains. However, greatgersible and irreversible domain wall motions in response to an
actuation authority can be achieved by applying an electric fietpplied electric field was used by Smith et [dl1] to investigate
exceeding the limit of a linear piezoelectric constitutive relation tthe hysteresis between polarization and an electric field. These
increase induced strains. Piezoceramics exhibit constitutive ngfiodels are more useful in engineering applications but are not
linearity of hysteresis due to the variation of polarization if thgompletely satisfactory due to weak physical assumptions or the
applied electric field is above the coercive limit. On the othghtroduction of material-related parameters without clear physical
hand, hysteresis behavior is also related to mechanical loadiﬂgeanings.

Different hysteresis loops are observed with varying mechanicalA physically based phenomenological approach to address the
stresses. r'%steresis behavior of piezoceramic actuators is developed in this

For the analysis of a smart structural system, it is necessary er. The piezoelectric actuator is assumed as a continuum with
develop efficient theories that are capable of addressing mateR&Pe" P ; . ; .
oriented and switchable dipole microstructure. The internal

nonlinearities and accurately predicting hysteresis phenomeno . L o
actuators under high electrical excitations accompanied by nf@nstraint of only two types of polarization switching, 180 deg

chanical stresses. It has been well known that the application&td 90 deg switching, in the case of a tetragonal piezoceramic
high electric field and mechanical stress has the effect of changiiggse under the application of mechanical loading and a high
the polar axis of material unit cells. The process of domain polaglectric field, is considered. The differential equation governing
ization reorientation creates repolarization, which introduces tiige relation between polarization and an electric field is estab-
hysteresis loop shown in piezoelectric material experimentished by considering the critical energy for 180 deg and 90 deg
([4,5]). This nonlinear phenomenon of piezoelectric hysteresis hawitching and energy loss due to inclusions in the materials. A
been studied by innumerable researchers at two different scalggw form of elastic Gibbs free energy for piezoceramics is pro-
Microscopic theories, based on individual domain or a simpigosed to address the coupling effects between polarization, an
collection of domains, present only some physical insights infectric field, and mechanical strains. A nonlinear constitutive
piezoelectricity and provide no successful model to accuratély,qe| indicating gradual development and critical yield of polar-

predict the response of practical actuators. Phenomeno_logl tion due to polar axis switching of crystal domains, is obtained
models, on the other hand, are proposed to match experimenfals - 1o+e electromechanical motion

results with assumptions motivated by certain piezoelectric char-
acteristics. Devonshirs,7] formulated a model of ferroelectricity
by expanding the free energy as a function of polarization and

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME OurNAL oF AppLiep  Model Development
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. . . X X . .
1, 2000; final revision, Aug. 28, 2000. Associate Editor: A. K. Mal. Discussion on FOr a piezoelectric elastic body, the elastic Gibbs free energy in
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departggthermal conditions can be written in terms of two independent
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, an§d iabl lari i d st that is.G P
will be accepted until four months after final publication of the paper itself in th tate variables, polarizatid?; and stressr atlis, (Uii Pi).
ASME JOURNAL OF APPLIED MECHANICS. Consider the functionatr as follows:
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(U, o), ¢,E,D;,Pj)

L L

EPUiUi"‘fiUi_Pe(f?—G(Uij Pi)—Did

1 1
*‘Tiji(ui,jJFUj,i)*(Di*E?’ijEj*Pi)Ei dv
+f Uijnj(ui_m)dS‘i‘f t_iuids
u FO'
+J Dini(¢>—$)ds+J E¢ds] 1)
r, I

wherep, f;, p, andy;; denote mass density, force per unit vol-
ume, electric charge density, and dielectric permittivity, respec-
tively. The quantitiess; ande;; denote mechanical displacement
and strain, respectively, and, E;, and D; denote the electric
potential, electric field, and electric displacement, respectively.
The quantitiess;, t;, ¢, andd denote the prescribed deformation
on the displacement boundary'(), the traction on the stress switching with respect to the polarization orientation of the previ-

Fig. 1

lllustration of surface mapping

boundary (,), the voltage on the potential boundary ) and
the surface charge on the charge bound&iy)( respectively, and
n; denotes the unit outward normal of the surf@Eg The varia-
tion of the functionalr with independent variation iau; , doj ,

8¢, SE;, 6D;, and §P; can be written as follows:

ous step. The polarization components, if they are perpendicular
to the direction of the summed polarization, counteract and cancel
each other. As a result, the polarization will be aligned along the
direction of the electric field.

The tetragonal crystallites with dipole moments and inclusions
such as voids, both governing the evolution of polarization, exist

i, T fi=pli=0, @ in piezoceramic materials. The total polarization can be parti-
D;i—pe=0 (3) tioned into two parts, polarizatioR,, which addresses the energy
’ required to align the dipole orientation with the direction of elec-
dG(oy;,P)) 1 tric field through 180 deg and 90 deg domain switching, and po-
Tij+ E(Ui,JJruj,i):O’ 4)  Jarization P, which addresses the energy required to overcome
the inclusions in piezoelectric materials. That is to say,
dG(aij ,Py) _
T_Eizo (5) P=P4+P;,. (12)
' Both of these polarization®, andP;,,, will be investigated next
Ei+¢,;=0, (6) and the governing evolution equations will be derived.
D — v E —P. =0 7) In a piezoceramic body of volumé with zero initial polariza-
T YiET tion, a dipole is modeled by a volumé, possessing a momept
u—u;=0 on S, (8) with a fixed magnitude. Random distribution of dipoles implies
o that each dipole can be mapped to a unit spherical surface with the
ti—o;nj=0 on S, (9) moment direction along the directi@p (Fig. 1) which guarantees
_ that the summation of dipole moments vanishes. Therefore, a con-
¢—¢=0 on S, (10) tinuous distribution functiorp representing dipole moment den-
— sity on the surface and polarizatiét can be defined as follows:
d-—D;nj=0 on Sy. (112)
Equations(2)—(11) govern the equilibrium of mechanical and pszﬁ, (13)
electrical motions, the constitutive relations of the electrome- 4mVy
chanical field, the electrical characteristics of dielectrics, the me-
chanical boundary conditions, and the electrical boundary condi- Py= ﬁg ps€y-eds (14)
tions, respectively. The constitutive relation will now be obtained

through appropriate form of the elastic Gibbs ene@fv;; ,P;) S

which can address the evolution of polarization and, furthermor\ysghereep denotes the dipole moment direction during repolariza-
illustrate the hysteresis behavior of piezoceramics. The hysteregis.
characteristics between polarization and electric field without A critical electrical energy is required to reorientate the mo-
stress effects will be investigated first. Then, the elastic Giblgent direction of the dipole through 180 deg or 90 deg domain
energy will be used to investigate the electromechanical coupliggitching. The density of this critical energy,, can be approxi-
effects. mated bypE. . For the dipole at a location described by the angle
¢ (Fig. 1), the accumulated electrical energy density that makes a
L - . 180 deg flip possible ig<E cose. The accumulated electrical
Polarization and Electric Field Hysteresis energy density that makess a 90 deg flip possiblpgEsing. If

For a piezoelectric body, I€., P,, and P denote the coer- the electrical energy density associated with a 180 deg flip reaches
cive electric field, the remnant polarization, and the saturatighe critical valuep., the 180 deg flip will take place first. The
polarization, respectively. The quantitifEsandP denote the mag- same is assumed for the 90 deg flip.
nitudes of the electric field vectdE) and the polarization vector  Figure Za) illustrates the initial state of zero polarization. In
(P), respectively. During the process of repolarization, polarizéhe absence of an external electric field, the moment direction of
tion orientation of any crystal cell is prone to be aligned along theach dipole is along, . Figure Zb) illustrates dipole direction
direction of the electric field, denoteg] to the best of its ability. variations due to the external electric fididapplied along the
This is achieved through either 180 deg switching or 90 detjrectione. The dipoles at the bottom surface of the sphete (
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e
a=arcco el a7)
The energy required to overcome the inclusions in piezocer-

amic materials, addressed by the polarizat®p, is assumed
proportional to the change in energy required to align the dipoles.
The process of repolarization can be modeled such that a dipole is
reorientated from the initial positiotmomentp’ with an anglef
between the directions of the dipole moment and the electrig field
to the aligned positioimomentp in the direction of the electric
field). The variation in energy density during this process, denoted
Apq, can be written as follows:

Apy=p-E—P'-E=pE(1—cos6). (18)

Therefore, the energy density to overcome the inclusions, denoted
Pin, Can be written as follows:

(@ (b) pin=CPE(1—cosf) (19)

Fig. 2 [lllustration of dipole reorientation wherec is a proportionality constant.

Considering the volume oflV with dipole densityn and
using the average of statistical mechani¢$1]), the energy
required to overcome the inclusions and the corresponding

—a<¢e=<) change their direction froms, to —e, due to the fact change in polarization, denotedR;, and AP, can be written as
that the 180 deg switching energy density¢E cose, is greater follows:
than the critical valug.. The dipoles at the middle of the sphere

E=0

o . 1
(72— a< p=<m/2+ a) change their direction frorg to —e, due AR, == 1—cos)ndV 20
to the fact that the 90 deg flip energy denspyk sin g, is g‘Feater "2 {pm)( ) ' (20)
than the critical valug., where« is used to denote the region of _
dipole switching. By using Eq(14), the polarizationP4 can be AP=pn(1-coso) (21)
calculated as follows: where(p ) denotes the value gf;, when 6= 7 (180 deg flip,
o - a 2+ —a that is,{2cpE). Therefore, the energy in the volurd¢/ in terms
Pd:Psf de f e et j _e¢.e+f e-e of the polarization change can be written as follows:
0 72—« w2+ a < >
. ARp="5 2 APdy. 22)
+f —e&-e[sinede. (15) P
T« Thus, during the process of repolarization starting from zero to the

The complete process of repolarization due to a cyclic loading ¥flueP, the energy required to overcome inclusions, den&igd

electric field can be determined following the above procedurg@n be written as follows:

The result is illustrated in Fig. 3. It can be observed that the (p.) P
ﬂ dvf

polarizationP reverses in the narrow regions around the coercive Rin= > dp. (23)

electric field. The variation of polarization can capture the basic

characteristics of the hysteresis loop. Finally, the relation betweeny, the other hand. the quanti®,, , representing the energy
R . . . ] in

the mapping valuespt and @) and the piezoceramic characterispggociated with the polarizatioy, in the volumedv, can be

0

tics (P andE.) can also be obtained as follows: written in another form as follows:
P £
P 2+ 7l2) (16) Rin=— f P,,dE dv. (24)
0
P=p,n(2+0.57) 0.4 -
€
)/ G 0.2 + Decreasing o
' = line Rising line
PFrp(-0.57-4a ' S 04
-2sin2at2cos2a) N E I
| o (-0.57+4a £-0.2 1
+2sin2q-2¢0s2q) e
-0.4 1
- PS -0.6 T T T T T T 1
-7 -5 -3 -1 1 3 5 7
Electric Field (MV/m)
Fig. 3 lllustration of polarization Py, Fig. 4 lllustration of hysteresis loop (PZT 5A)
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By equating and differentiating Eq&3) and(24) with respect The polarizationP, (Fig. 3 shows that the flips take place
to the electric fieldE and substituting Eq(12) into it, the follow- in the small regions around the coercive vati&,. Therefore,
ing incremental law governing the polarization development 13, can be approximated by two straight lines® with jumps at

obtained: the points of the coercive values. By using this approximation,
dp Eqg. (25 can be solved with two explicit solutions, which repre-
k—=P4—P (25) sent the rising line and the decreasing line of the hysteresis loop
dE (Fig. 4), respectively. The hysteresis loop can now be written as
wherek is a material constant and is denotgd,)/2p. follows:
|
. E P, . .
P(E)=signE—E.)Pg 1—ex E——l In| 1— B rising line
C S (26)
P(E)=signE+E;)Pg 1—ex E—+1 In| 1— B decreasing line
C S
or
E(P)—E, 5+ sign ) D= [P/Ps) 27
( )_ C Slgr( )ln(1_|Pr/P5|) ( )

where §=1 represents the rising line ardd= — 1 represents the decreasing line.

Generally, piezoceramic material will not be driven to full saturation, which implies that the maximum polariZatjoduring the
process of repolarization is smaller than the saturation valuBsof The magnitude o, can be obtained through E{6) by
substituting the maximum applied electric field into it and the hysteresis relation can be written as follows:

E P,
P(E)=P41-exp |=——1/In| 1— = E.<E<Ea
E. Ps
E P rising line (28)
P(E)=—P/ 1—exp(E——1 In(l— P—r” —Epam<E<E,
Cc S
and
E P,
P(E)=P{1—exp | = +1|In| 1- = —E.<E<E_
E. P
£ b decreasing line (29)
P(E)=—Ps 1—exp( —+1 In(l——r” —Epa<E<-E,
E. P

where E5 is the maximum value of the applied electric fieldside of Eq.(30) represents the mechanical strain energy and the
For both rising and decreasing lines, if the directions of thsecond term results in the electrical-mechanical coupling. The last
polarization vector and the electric field remain the samerm,F(P)), is used to address the hysteresis effects.
(EcSE<Epq for the rising line and—E,<E<—E for the  sybstitution of Eq(30) into Egs.(4) and(5) yields the follow-
decreasing ling the equations or the corresponding paths in th@g constitutive relations:

loop will be the same as those driven to the saturation pijnt
The repolarization stops when the electric field reaches its maxi-
mum value =E,,,, and the pseudo-saturation pointsP. are
reached. If the polarization and the electric field have opposite

- ALTIe o - =S +0,
directions (En<E<-E, for the rising line and—E.<E i = Sija 0+ Qijra PPy

. . h 31
<Enax for the decreasing line the paths will start from the E;=—2QuioxP+1,E(P) (31)
pseudo-saturation points P, instead of the saturation points
+Ps.

wherel ,E(P), representing the hysteresis relation between polar-

Elastic Gibbs Free Energy ization and electric field in the absence of stresses, results from
the derivative offF(P;) with respect to the polarizatioR; . The
quantity I; denotes the direction of electric field ai(P), the

G(ay P)=— %Sjkﬂij”m—QiijijPkP|+F(Pi) (30) \ézgitlggﬁgfedelienctlzrngﬁld due to the change in polarization, has
where the quantit;, denotes the elastic compliance at constant For piezoelectric material®;; can be expressed by two ma-
polarization. The quantityQ;;, denotes the material constantderial constantsT; andT,. Equation(31) can then be simplified
representing piezoelectric effects. The first term on the right-hatw matrix form as follows:

The elastic Gibbs energy is assumed as follows:
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[Si1 Sz Sis 0 O [T,+T, T, T, 0 0 0 )

€1 o1 P1

| S S Sa 0 0f|, T, T4T, T, 0 ol p2

3| _ Siz Siz Sas 0 O] o N Ty Ty T,+T, O 0 0 P3 (32)

€4 0 0 0 S, 0 0]|os 0 0 0 21, 0 0 || PP

&5 0 0 O 0 S, O0ff7 0 0 0 0o 2, O gsil

& a

o 0 0 0 0 S 7| 0 0 0 0 o0 & -t

and

El (T1+T2)0'1P1+T10'2Pl+T10'3P1+T20'6P2+T20'5P3
Es|=—2| ToogP1+T101Po+(T1+T2) 03Py +T103Po2+To04P3 +1,E(P). (33)
E3 T20'5P1+T2(T4P2+T10'1P3+T10'2P3+(T1+T2)O'3P3

Note that induced strains from the linear constitutive relation cahe saturation point is reached, the polarization decreases along
be written as follows: the decreasing line with decrease in the electric field. The hyster-
esis loop is also investigated if the material is not fully saturated.
&ij = Sijki o+ dijic . G4 The hysteresis loops due to electric potentials with the maximum
The hysteresis relation and the linear constitutive relation, adalues of 1600 V and 1000 V, that is, electric fields of 6.3 MV/m
dressed by Eq32) and (34), should predict the same inducedand 3.93 MV/m, are presented in Figs. 5 and 6, respectively. The
strains if the applied electric field varies in the vicinity of zeronaximum polarizations are smaller compared to the fully satu-
value where the linear constitutive relation is effective. Therefore,
the following relation is obtained:

0 0 dusl[o] [T+T, T, T,]| ©

0 0 dys||0|=|T; T41+T, Ty 0 |. (35 0.6 y— — —Experiment
E T, Ty T4+T 2_p2 Smith et al.)
0 0 dy 1T Tt Tel| p2—pi 0_4_——-§Vodel
Using Tylor expansion to approximate the square term in(&s), o r/
the material electrical-mechanical coupling constantsand T, NE 0.2 4 [/
can be expressed in termsdfy , the piezoelectric coefficients in e
the linear constitutive relation. s 0-
T. = dllaEc)\ g
Y —2P,(Ps—P,)In(1—P,/Py) ) S-02 -
36
1o (dsg-dugEeh 04l
27 —2P,(Ps—P,)In(1—P, /Py '
where a scalax is introduced to obtain the best simulation for the -0.6 T T T T T T ™
entire process rather than limiting to the vicinity of zero electric 7 5 3 -1 1 3 5 7
field. This quantity should be determined specially for different
materials. Electric Field (MV/m)
. . Fig. 5 Comparison of electrical hysteresis loops (PZT 5A,
Results and Discussions 1600 V)

The developed constitutive relation is used to model the hyster-
esis behavior of piezoceramics due to significant variations of 0.6 4 — — —Experiment

electric field. The results obtained using the current model are (Smith et al.)
correlated with available experimental results. 0.4 - —— Mo
First, the hysteresis relation between polarization and electric - ™ y;
field is investigated in Figs. 4—6. The prediction obtained from the & I
current model is validated with experimental resutsl]). The g 0.2 1
solid line and dash line denote the results obtained from the cur- ¢
rent model and experiments, respectively. A cylinder PZT 5A S 07
wafer of diameter one inch and thickness ten mils is considered. _g
The repolarization is generated under quasi-static operating con- §-0.2
ditions (200 mH32. The hysteresis characteristics are such that the
saturation polarizatiorPs=0.49 C/nt and the coercive electric 04 4
field E;=1.2 MV/m. The remnant polarization of piezoceramics
is approximated by the relation ¢¥,=0.82P; ([12]). Figure 4 06 . . r . r T .

presents the hysteresis loop between the polarization and the ap
plied electric field which is high enough to make the material
saturated. It is observed that the current model can capture the Electric Field (MV/m)

characteristics of hysteresis loop in piezoceramics. With increase

in the electric field, the polarization direction varies from negativeig. 6 Comparison of electrical hysteresis loops (PZT 5A,
to positive along the rising line due to dipole reorientation. Once00 V)
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Table 1 Material properties of soft PZT-51 ceramics 039— — = Experiment
Elastic moduli Sysar=3.03< 10 L m2/N o’€ 024 Fac?gl etal.)
Sg31=2.9X 10" m?/N o
Piezoelectric coefficient d333= 1520 pC/IN bt
d31,=570 pC/N g 0.1 4
Relative dielectric permittivity y=11300 £
Coercive electric field E.=0.676 MV/m ©
Remnant polarization P,=0.1938 C/M 8 0 A
2
©-0.1 4
L
rated case. A good agreement between predictions using the cur-*g_o_z -
rent model and experimental data is observed. This indicates that i
the physical phenomena with different scales of driving electric 0.3 . . r .
fields are modeled accurately by the present analytical model. ) 9 1 0 1 2

Further investigation is performed with soft PZT-51 ceramics
including the hysteresis loop between the electric displacement Electric Field (MV/m)
and electric field and the butterfly loop between the induced strain
and electric field. The material properties of soft PZT-51 Cerami%_ 8 Comparison of electrical hysteresis loop (PZT-51, o4
are listed in Table 1. The bulk specimen is used with the dimes—20 Mpa)
sions 10 10X 16 mm. The piezoceramic is driven by an electric
field up to a value of 1.125 MV/m along the longitudinal direc-
tion. The correlations between the results obtained using the Cyfith change in the electric field, under zero stress and a compres-
rent model and from available experimental dte]), with zero  gjve stressr,= — 20 Mpa, are presented in Figs. 9 and 10, respec-
and a constant compressive stress along the direction of the el@gs|y The material constantis assumed to be 2.4 to provide the
tric field, are presented in Figs. 7-10. Figure 7 presents the hygsst approximation of the entire loop. Note that a zero strain is
teresis loop between the electric displacement and electric figldsymed for the initial state of the zero electric field. Figure 9

under a zero stress conditiom{=0 Mpa). Linear behavior is ghows that the current model is capable of capturing the charac-
observed with a small value of the electric field. This leads to the

linear relation between the electric displacement and the electric
field addressed by the permittivity constant, representing the slope
of the zero electric field point in the curve. With increase in the
applied electric field, the nonlinear effect due to the variation of Rﬁ:ng etal)

the polarization resulting from significant 90 deg domain switch- 1000 { — Model o
ing is observed. If the electric field is applied opposite to the
direction of the polarization, both 180 deg and 90 deg domain
switching will occur when the applied electric field approaches
the coercive value. This leads to the reversal of the polarization
direction. Good agreement is observed between the developed
model and the experimental results. The hysteresis loop with com-
pressive strese;= —20 Mpa is presented in Fig. 8. Compared to
the case with zero stress, there is a significant decrease in both the § | \
remnant value and the saturated value of the electric displacement.— -2000 - \

This is due to the fact that only depolarizati®0 deg domain v Yy
switching results from compressive stress, which leads to the

decrease in the polarization value. Again, good agreement is ob- -3000 ' ! '
served between the theory and the experimental results. The but- -2 - 1
terfly loops representing variations of induced longitudinal strain Electric Field (MV/m)

— — =Experiment

o
1

~1000 1

gitudinal strain (pe)

Fig. 9 Comparison of longitudinal strain (PZT-51, 03=0 Mpa)

0.3 9 — — —Experiment
—~ Fang et al.)
NEOZ_—glbdel 1000 1
e / g
£0.1 - §  0-
E Lz
(o] —
g 07 =
o 5 -1000 -
R =)
8'0'1 . ) Experiment
L = — — —Experimen
=1 S -2000 4
909 4 - Fang et al.)
802 ——foad
'0.3 L L] L) L] '3000 L] L L) L]
-2 -1 0 1 2 -2 -1 0 1 2
Electric Field (MV/m) Electric Field (MV/m)
Fig. 7 Comparison of electrical hysteresis loop (PZT-51, o3 Fig. 10 Comparison of longitudinal strain (PZT-51, o3
=0 Mpa) =—20 Mpa)
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Piezoelectric actuator Beam 0.04 -

Nonlinear model

_L — — —Linear model
T

x
.“N-

t~
P

Tip position

Tip deflection (m)

Fig. 11 lllustration of cantilever beam, surface-bonded actua-
tors

0 L] L] L ] )

teristics of the butterfly hysteresis of piezoceramics. The linear 0 100 200 300 400 500
relation between the induced strain and the electric field is valid Voltage (V)
for small values of the applied electric field. This is predicted by
the material coupling constadts; in the linear constitutive rela- Fig. 13 Comparison of linear and nonlinear induced deflec-
tion. With increase in the applied electric field, the induced strafPns
increases and nonlinearity is observed due to variation in the mag-
nitude of the polarization. With further increase in the electric
field up to the coercive value, the trend reverses due to the champgéarization. Figure 12 presents comparison of the tip deflections
in the polarization direction. It can also be observed from Fig. ®ith variation in actuation voltage using the current model and the
that in the case of zero compressive stress, hysteresis is accurdtegar constitutive model. Based on the result obtained using the
modeled except in the small region where polarization approactesrent model, it can be observed that initially the deformation
zero value, that is, the region where polarization reverses its diereases rapidly with increase in the applied voltage due to the
rection. One reason for the misprediction is the shift in coerciVarge variation in polarization. With further increase in actuation,
electric field during the process of electrical loading, which is ngiolarization approaches the saturation value. Therefore, variations
considered in the current model. Figure 10 presents the hysterési®oth polarization and deformation are small. The significant
under a constant compressive stresg= —20 Mpa). It can be difference between the linear model and the present nonlinear
observed that the results obtained from the current model amdel is due to the fact that the linear model neglects the evolu-
experiments show good agreement. The range of the strain vatian of polarization. It can also be observed that the linear model
tion is smaller compared to the case without stress. This resultsderpredicts the authority of shape correction~(@®0 V),
from the effect of depolarization due to the compressive stresswhich was pointed out by Crawley et dl13]. Next, actuation

As shown in Fig. 11, a thin aluminum cantilever beam, with topffect with a change in the polarization direction is investigated in
and bottom surface-bonded piezoelectric actuators at the rootFig. 13. The electric field is applied upwards on both actuators to
considered to investigate the nonlinear actuation effects. Theoduce the bending moment. Again, variation of the tip deflec-
beam dimensions are length=0.61 m, widthb=0.061m and tion due to different actuation, using the current model and the
thickness t,=8x10 *m. The Young’'s modulus is 7.235 linear model, is presented. It can be observed that initially the
X 10 N/m?. The structure is modeled using the Bernoulli-Eulegurrent model predicts the linear relation between the induced
beam theory. The piezoelectric actuatt®ZT-51 ceramicsare of ~deflection and the applied electric field. This is due to the fact that
lengthL/12, width b and thicknesg,=3.175<10"“m. The po- before the electric field approaches the coercive value, polariza-
larization directions of the top and the bottom actuators are d&n in the top actuator increases and polarization in the bottom
sumed upwards and downwards, respectively. First, actuation @fuator decreases. The combination of these two effects results in
fect without change in the polarization direction is investigated iféar variation between deformation and actuation. With further
Fig. 12. The electric field, varying fro 0 V to 500 V, isapplied increase in the electric field, up to the value approaching a coer-

upwards on only the top actuator. This implies no reversal Five electric field200 V), the induced deflection produces signifi-
cant nonlinearity due to the large variation in polarization of the

bottom actuator. The polarization of the bottom actuator reverses,
0.04 - aligning with that of the top actuator. Therefore, the bending de-
formation becomes insignificant, which leads to zero deflection if
both actuators reach the point of saturation.

Nonlinear model

o

o

@
[

Concluding Remarks

A new theory is developed to model the hysteresis relation
between polarization and the electric field of piezoceramics. An
explicit approximate solution is obtained to illustrate the hyster-
esis loop by using saturation polarization, remnant polarization,
0.01 - and coercive electric field. The elastic Gibbs energy is proposed to
address the coupling relations between an electrical field and a

-~ mechanical field. The nonlinear constitutive relations are derived
0 - - from the elastic Gibbs energy. The hysteresis relations between
’ ) ) ) ) polarization, mechanical strain, and an electric field using the cur-

0 100 200 300 400 500 rent model are correlated with those obtained from available ex-

Voltage (V) periments. The constitutive relation derived from the current

model is implemented in the analysis of a cantilever beam with

Fig. 12 Comparison of linear and nonlinear induced deflec- surface-bonded piezoelectric actuators. The following important

tions observations are made from this study.

— — =Linear model

Tip deflection (m)
o
o
N
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Rheological Behavior of Confined
Fluids in Thin Lubricated Contacts

J. Tichy Continuum based methods are traditionally thought to be of little value in describing

Department of Mechanical Engineering, boundary lubrication, or the mode of lubrication in molecular scale films that may occur

Aeronautical Engineering and Mechanics, at asperity interactions during the sliding of nominally flat surfaces. There is considerable
Rensselaer Polytechnic Institute, experimental evidence, which suggests that the classical theory may be valid with modi-

Troy, NY 12180-3580 fication to films as thin as several nanometers. In addition, lubricants, which exhibit

viscous liquid properties in bulk, may form attached solid-like elastic layers when con-
fined between solid surfaces. In the present paper, the simple “elastic foundation” con-
cept is used to model the elastic layers, in contact with a viscous fluid film. Several typical
bearing contact flow problems are solved, giving hope that boundary lubrication may
eventually be modeled in the same manner as hydrodynamic lubrication in thicker films.
[DOI: 10.1115/1.1354204

Introduction rous mediun13] and as a highly viscous layét4]. Auslander
and Sidoroff 15] have modeled the layer as an elastic layer, using

It has become fairly well accepted based on wide-ranging eXhat they called a “thin film approximation,” much like such

per_imental and theo_re_tical evidence that_ confined I_iquids in tr.ibﬂhid mechanical assumptions, but nothing like the thin film ap-
logical contacts exhibit CO“?P'?X rheoI(_)glcaI behavior. 'T‘ particys oximation of solid coatinggThey use a hydrostatic stress as the
lar, the presence of a solid-like confined layer adhering 10 the, 4| components of the stress tensbr.any case, they predict
confining surfaces and roughly one molecular length in extent ig, effective viscoelastic material response for the film, consistent
postulated. Surface force experiments by Israelacfijland col- it the experiments referred to above of Tonck et[4]. and
leagues, Gee et dI2], Homola et al[3] on a similar apparatus of Georges et al[5]. They only apply their model to the simple
Tonck et al{4] and Georges et dl5] all point to the existence of sqeezing case. In the present case, we extend the Auslender and
solid-like structures in confined films of materials that exhibi§igoroff work in the sense of using an elastic film, but we use the
purely viscous liquid properties in bulk. Such properties are als@|astic foundation” or Winkler or “mattress” model discussed
thought to contribute to an intrinsie., not caused by roughnessy johnsor{16]. We are able to arrive at a much more general
capillarity at asperity junctions, and other facfossick-slip be- formulation, a modified Reynolds equation, and solve a number of
F6a]\)/|0r of some lubricated Contac¢¥osh|zawa and Israelachuvili “classical” lubricated contact pr0b|ems_

The most convincing experiment as to the presence of solid
layers is that of Chan and Hofi]. The slow squeezing of a thin Analvsi
‘ ‘ : ysis
film between two crossed molecularly smooth mica cylinders is
performed. The authors find that the squeeze rate is well predictedconsider two rigid solid surfaces separated by a thin film of
by the classical Reynolds equation of hydrodynamic lubricatidhicknessH(x,y,t). To model the effect of solid-lake layers we
theory (see, e.g., Hamroc8]) down to about 30 nm. Reynolds assume that elastic layers of thickné¢s., y,t) adhere to the rigid
equation is an integrated form of the Navier-Stokes equation fedrfaces, and the fluid region is given by
thin films of I(_)W curvature, without the presence of ine_rtia or_body h(x,y,t)=H—26. 1)
forces. At thinner gaps, good correlation with experiment is ob- : )
tained by simply adding a fictitious rigid layer of 0.7 nm to thelhe rigid surface separatidd and the undeformed elastic layer
mica surfaces. Such a layer is really a curve fit parameter in théficknesss; are assumed to be imposed on the problem, while the
analysis, but can be thought of as representing a solid layer dueet@stic layerd may be compressed according to the pressure in the
lubricant microstructure. This approach predicts the trajectory rlm (see Fig. 1 The elastic deformation is assumed to obey the
markably well (=2 percent down to films of about 2 nm, after 3|mpl_|f|ed \_Nlnkler or “mattress” model, dl_scussed by Johnson
which further squeezing occurs in steps. The molecular size [{gf]: in which the displacement, at any point depends only on
about 1 nm, and the continuum Reynolds theory works well ont§€ Pressure at that point:
scale much smaller than one might anticipate. p(X,y,t)

Molecular dynamics simulations have added further credence to U,(X,y,t)=6;— 6= 6‘T )
the existence of solid-like layers in thin fluid films, and to predic-
tive ability of continuum models in films spanned by relativelyandK is the elastic modulus. Reynolds equation holds for the fluid
few molecular lengths. Such studies are due to Thompson amegjion:
Robbins[9], Thompson et al[10], Hu et al.[11], Landman et al.
[12], and many others. A s D =y —+ — (3)

The present author has modeled the surface structures as a po- X\ 12w ox) ay\12u dy) 2~ dx dt
assuming sliding at velocityJ occurs only in thex-direction.

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF However, this equation is now s’[rong|y nonlinear due to the cou-
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED ; : ; .
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, JuIypllng between film thicknesk andp:
2, 1997; final revision, May 3, 1999. Associate Technical Editor: D. A. Siginer. p
Discussion on the paper should be addressed to the Technical Editor, Professor =h+25— . —H_925
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, h=h; 26'K - hixy ) =H=-24;, )
Houston, TX 77204-4792, and will be accepted until four months after final publi- . .
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. whereh; is also treated as known or imposed.

a(h3ap) a(h3 ap) 1 oh oh
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Fig. 1 Schematic of contact

The velocity and shear stress in the flow regiof<@E<H
— 6) are given by

ap
Foiitas 8)%—(z—&h]+U|1-

T ou h
2_
vy=5a ay[(z 8)2=(z=d)h]
duy hop U
e A e "
5 vy B h dp
sz(Z )= M&Z :5_ EH_X

The forces on the bearing surfaces are given by

L (W L W
F":f f T,(z=8)dydx Fy=f f T,(2=8)dydx
oJo 0Jo

(7
L (W
Fz:J J (p—pa)dydx
0Jo

(pa is the ambient pressurevhereF, andF, are friction or trac-
tion forces, and~, is the supported load.
We nondimensionalize the above equations using

xt= 2 y*—y 5*—5 h*—h h¥ = 26¢
=L L “H ThH TR Teo
L L H, H, ®
so P7Pa o P7Pa o Vo, U
wVyL2IH? wVyLIHZ 7%V, L/Vy;

whereV,; andH; are a reference sliding velocity and film thick-
ness, respectively. We assume a perturbation solution of the f

i(hi*sap?) 9 (hi*sapi*>

12 ax* | oay* | 12 ay*
ap: Bh* ape
Y P B
X (9t ax* o"X
1 apy\? [apy\* ., 9°p§ 7§
_E i 2 (QX* + F +p0 (9X*2 +p0 ay*z (11)

The parametei®* represents a dimensionless elastic compli-
ance of the layer, the ratio of the order of magnitude of the lubri-
cation theory pressur;evxiL/Hi2 to the layer elastic modulus. In
physical terms, the zero-order perturbation solutgnwith h
=H* represents the pressure for a Newtonian fluid film. The
zero-order solution with* =H* — 25 represents the solution for
a film consisting of a Newtonian fluid and the surfaces covered by
rigid layers of thickness. The first-order perturbation solutiqe}
is a correction to the rigid layer solution for the elasticity of the
layers.

The One-Dimensional Parallel Surface Squeeze Film.Con-
sider the case of two infinite parallel plates undergoing pure
squeezingH* =H* (t*) andV} =0. See Fig. 1 for the case when
the bearing slope is zero and the origin- O is at the midpoint.
The reference velocity in the nondimensionalization of &8).is
given byV,;=V,(L/H).

In this case, Eq(10) becomes

1 dht
h¥s dt*

7°ps

_ * _
v X*==*

NIH

:pg =0. (12)

Integrating twice and applying boundary conditions at the film
ends, we obtain

i He (1 O\ . aH*
p0:_6ﬁ Z—X y H :m—*. (13)
The first-order case is as follows:
a°py 1 opy 1 ,lop5\% 1 ., P°P;
ax? 12| 25 | g | T2 Poger )
' (14)
X*:+£'p*:0
+5:p1=0.

Again, integrating twice and applying the boundary conditions,
we obtain for the first-order solution

py =36

. 1
7 H*Z( - §+3x*274x*4)

(15)

5 1 . 1
_yx2 x4
a8 2% 3% )

+H*h*(

The dimensionless load, from E(7), can be expressed in the

Ofmowmg form:

Vil
h*=h¥+2x* 5 p* p*=ps+x*op+... «*= :U«Kquz E*— F./wW ,
I uVLATH;
©) _
W ; ; 12 H* 1 54 . 12 ..
e obtain a zero-order Reynolds equatitite conventional cage =2 p*dx* = — h*3 +K* S = - H*24 == = H* h¥ .
0
o (hePapg| o (hPaps) 1, oht  dht (16)
12 ox* | ay* | 12 gy*) 2 "Xox* o gt* , o ,
(10) Let us consider now a case similar to that considered by Aus-

and a first-order perturbation modified Reynolds equation

Journal of Applied Mechanics

lander and Sideroff15] with small rapid oscillationsw of the
surface superimposed on a slow steady rate of descent:
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wl L _ H(0)—H(L)

* = O o VEFt* +o* sin(@*t* ) =h* + 28 ¥ Z1—mx* =h* +25*
W= HTSLoVIgta” sinett)=hi 425 . H*=1—mx* =h* + 25", o) 1)
L@ and forp* (x*) the zero-order solution is
Performing the indicated steps and taking the limit for small F’S:E[hi*(x*)l—hi*(o)l

V3 L/H; and then smalk, the zero-order solution for the load is
h¥(0)hi* (1)
12 _ VAT ra* (xk Y2 h*(0) 2
Fi o= —a* 0*| cofw*t*)+ E,u*é}*w* Sin(w*t*)). h(0)+hf(1) [h?(x*) h(0) ]] (22)

(18) The first-order modified Reynolds equation takes the form

The 01 subscript denotes zero-order solution\f$t./H; and the g [h*3ap*\ ap* oh* opk
first-order solution fora*. If the film was considered to be a —*('——i) = — —
homogeneous linear viscoelastic material, the components ofX" | 12 dx 24 Ix* Ix
| i it Id b
complex viscosity would be . 1, (ap3>2 o azpé
. w 1 * *
7 =n and 77”:/1/“)* K* 5rzﬂﬁ'm% (19) 2 X IX
P 144m . w2
Thus, we see classical linear viscoelasticity exhibited. The equiva- = h*3(h* (0)+ h* (1))2 [ag+ax* +ax* 7],
lent relaxation time\ and Deborah number De would be o ' (23)
N 12 5i L3 “ 5 N (20) X*:O, 1p|*:0
=————, De=)\w.
5 H; HY K ap=h*(0)2h* (1) a,=—2h*(0)[3m2—5mH* (0)+h*(0)2]
Due to the symmetry about the film center<0), the global (24)
friction force F, equals zero. ag=m[—m2+7mh*(0)—7h¥(0)].

The One-Dimensional Steady Wedge Contact. The dimen- Again, integrating twice and applying the boundary conditions,
sionless film thickness is, again referring to Fig. 1, we obtain for the first-order solution

|
P =b[hf (x*)~2=h{ (0) 2]+ bl hf" (x*) ~3=h{ (0)"*]+by[hf" (x*) ~*=h{ (0)~*]+bs[hf" (x*) ~°—h{ (0)~°]

(25)
_ 4gm*+5m°hf (0)—35m?h (0)2+60mH* (0)°—30n; (0)*]
2 5m?h7 (1)hf (1)(h¥ (0)+hf (1))3
I
48 7h¥ (0)2—7mh* (0) + m?] . 6€(2+¢ cosh)sing (28)
T MmO ()? 6) T 2
b — 1447 (1)h’(0) 3 —432h¥(1)%h¥ (0)2 and, as above, the first-order differential equation looks like
4 m?(h¥(0)+h*(1))" ~° Bm?(h*(0)+h¥(1))% ) o0 L
. . .. I S R
_ Dmensmn}ess load and friction are computed from the follow- o (h. o ) (hi*(0)+hi*(1))hi*4
ing formulas:
1 1 op* 1 X (Cg+Cq CcOSH+C, COS 20+ C3 cOS 3)
* __ * __
FZ—J’O p*dX*, Fx_fo(h*ﬁ—i_h_* dx*. (27) (29)
These integrals can be evaluated in closed form for the wedge Co=—6€l(—8+34el +€)),
case, but the expressions are not shown here.
C1=—3¢(—8+49¢’+31e), (30)

The Journal Bearing Contact. Film thickness expressions
are given below. Co= —662(10- 262+ €%), C3=9e¥(—1+€D).
h=c—26+ecosf, hf=1+¢ coso, . ) . "
(272) Integrating twice and applying the boundary conditions that
€ e p1(0)=0 andpy(7m")=pi(7) gives

1-26F" o
The radial clearance equalsR, er— Rinner<Router» @nd the cir-
cumferential coordinatef plays the role of x* where L
=2mRyer- IN dimensionless form, the layer thickness has been
folded into the eccentricity ratio, to take advantage of the conven-
tional journal bearing integrals, which are expressed in terms of ) )
1+ecosé. The zero-order solution is d,=10€{(2+ €).

€

. 12 do+d;+d, 11— 76¢—80e?—20€’

P = 72 X *5 ~7 ;
5(2+ €2 h; (1+¢€)

do=11-136e2—10€', d;=—5¢(13+20e?), (30a)
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Results and Discussion 4r

Results for the case of simple squeezing flow between parallel 33 5" 0.0, K20 A
plates are shown in Figs. 2—5. The solution consists of the zero- 3 \)/_\s =0l =l
order solution, which treats the confined layers as a rigid solid. o 25 f
The first-order solution, shown in Figs. 2 and 3, shows a reduction g 2L -
of pressurdnegative correctiondue to the elastic softening of the 5 st // — \
layers. The pressure correction for steady squeefifig=—1, 1k /// - X \\\
H*=0) is reduced by acceleratighi* = — 1, H* = 1) of the sur- 05k .
face, as shown in Fig. 2. The effect of the relative thickness of the /4 SN R N R
layers is strong. A change from onfjf =0.1 to 5F =0.15 causes 04 .02 0 0.2 04

coordinate x”

the compliance effect to increase manifésde Fig. 3.
The complete pressure field is shown in Fig. 4. Three cases re . ionl ith and without | |
trayed. The case of a purely Newtonian film with no lay Ig. 4 Dimensionless pressure with and without layers. Paral-

ppr ) 4 . : S squeeze film, effect of layer compliance, with parameter val-

yields the lowest pressurés{ =0) in which case the acceleration oo. 1« —1 fr=—1 fj=0.

H* doesn’t matter and the compliance paramet€ris not de-

fined. The case of rigid layerisc =0, & =0.1) produces much

larger pressure. Compliant layers reduce the pressure ConSiqer'resentative of behavior in a converaing contact. such as ma
ably, with and without acceleration. Compliance also adds a time=P 9ing ' y

dependent viscoelastic effeue to the acceleration tejras ex- 9°CH" between certain asperities in a micro-EHL contact, rather
than as plane slider performance per se.

Eglrtiigti:n thvsoaijcmt?éln'?h;”rzagisiiai ﬁp:gglg Ei’uni";‘g The first-ordgr solution,_sh_own in _Fig. 6, exhibits a reduction of
: e i i ) pressurgnegative correctionin the first part of the contact, and
present perturbation analysis is valid fef 67 <1 and thus could then an increase is exhibited near the exit. This differs from the
be thought of as applying in conditions that approach boundapyra|iel squeeze case, where the only effect of compliance is to
lubrication. Under these conditions, the model produces muglcrease. Recall that the displacement of the layer is simply pro-
larger load carrying capacity than predicted by pure hydrodymrtional to pressure, see E(). However, in the perturbation
namic theory, consistent with the physical picture. modified Reynolds equation, E¢L1), it is the slope of the zero-
Figure 5 shoyvs the ratio of normal force with the Iay_ers presepiqer pressuregps/ax* (proportional to the slope of the film
to the force without the layers. The effect of compliance is @ yich “grives the correction as well as the zero-order pressure
reduc_e effe(_:t of the confined layers, and the reduction is SUONG&LIf. Thus the effect of the elastic layer may be to increase or
for thinner films. decrease the correction depending on the sign of the slope. The

Results for the case of a simple wedge coni@tane slider ooct of the relative thickness of the layers is strong, as a small
bearing are shown in Figs. 6 and 7. This case is presented as

e i e ananas
0 ~ \ 1
= 1
[ S 22 ¢ < K'=0 ]
. 2 LN\ / 2 S ]
< i g& 2 [xi=p05 ~ ]
[ S [ oarpvios2_ ]
£ f AR & -1 / L, o= ~—— ]
B adl ST £% v s
E A S g8 r L~
3 Sg 1.6 s N
g 6 N\ / RN d T~ =005
z [ A \/ / e : .
£ \ / 14 PH 2 =)
a 8 [-dHd =1 NS ]
[ @®H'/d2=0 ] 12 Lodbvvnedvn by
o L A B SRR S 1 08 085 09 095 1 105 L1 115 12
04 0.2 0 0.2 0.4 Film Thickness H"

coordinate x Fig. 5 Load ratio of normal force  (with and without elastic lay-

ers) versus film thickness. Parallel squeeze film, effect of ac-

Fig. 2 Pressure correction for layer compliance. Parallel - )
celeration and compliance.

squeeze film, effect of acceleration, with parameter values:

H*=1, 6F=0.1.
10 —
N7 s | A
v \\\\50':_0_'1///’ f 0 \ e E
S o) /- E I ~ meos 7|
o\ / g N /
Q <3 :
g il § -10 ™ .
TR \ / E : \ / ]
2 ] g -I5E .
2 [ ] 2 r B
= oas \‘5\ 9/ ] a E m=0.6\\ / 3
E 1 20 b -]
04 w02 0 0.2 0.4 25
coordinate x* 0 0.2 0.4 0.6 0.8 1
coordinate x”
Fig. 3 Pressure correction for layer compliance. Parallel
squeeze film, effect of layer thickness, with parameter values: Fig. 6 Pressure correction for layer compliance. Wedge con-
*=1, H*=—1, H*=1. tact, effect of wedge incline, with parameter value: 67=0.1.
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3 —r— 200 |
x'=0.0 5*=01\_,/\\ 1 i I
2.5 .
\ 1 . _ 150 [
"= *= h o [ b
. 5 k=1 8" =0.1 : s ‘ I c=04 ]
o /7 \\ £ 100 1
=1 / ] o F B
2 15 ] g r 1
£ / // \ ] e 50 f ]
1 ] 2 [ 1
: // — \\ \ g r £=0.16 1
05 F // 5°=00 — T o
LB -50 - :
0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 21
coordinate x coordinate 6
Fig. 7 Dimensionless pressure with and without layers. Fig. 9 Pressure correction for layer compliance. Journal bear-
Wedge contact, effect of layer compliance, with parameter ing contact, effect of eccentricity ratio, with parameter value:
value: m=0.5. 6;=0.1.
. 10 pr
change of the slope parameteicauses a large change in pressure F . ]
correction. The exit filmh¥ (1) changes from 0.2 to 0.0 per- : K=01, §7=0.1
cenp for a change irm from 0.6 to 0.5(17 percent sk r/ E
The complete pressure field is shown in Fig. 7. Again, three : / k=00, 87=0.1
cases are portrayed. The case of a purely Newtonian film withno & E A .
layer yields the lowest pressuré}(=0) in which case the com- g o E
pliance parametex* is not defined. The case of rigid layers £ E, . f
(«*=0, 87 =0.1) produces much larger pressure everywhere. P k=00 8'=00
Compliant layerg«* =1, 5F =0.1) generally reduce the pressure, 5 F /
but increase it slightly at the exit. 3 ~ ]
Load and friction behavior for the wedge contact is shown in S R S R
Figs. 8a) and(b). Both parameters increase with the slope of the 0 0.5 1 15 21
wedge. Recall that for all predictions generated by hydrodynamic coordinate 6

theory, friction is smaller than load by order of magnitude factor ) ] ) )
Fig. 10 Dimensionless pressure with and without layers. Jour-

nal bearing contact, effect of layer compliance, with parameter
value: e=0.4.

H/L, which is reflected in the dimensionless scaling. Note that the
layers increase both load and friction while compliance tends to
reduce these forces. As to modeling of boundary lubrication, the
present conceptual model would better represent global load than
friction for a contact consisting of an ensemble of microcontacts
such as the representative wedge. Global load is likely the sum of
the load of the microcontacts. However, global sliding friction is
more probably influenced by additional factors such as elastic
deformation, ploughing action, etc.

" e b Similarly, results for the case of a journal bearing contact
0 0.1 0.2 0.3 0.4 0.5 0.6 (plane slider bearingare shown in Figs. 9 and 10. As above, this
case is presented as representative of behavior in a converging-
diverging contact, rather than as journal bearing behavior.

The first-order solution, shown in Fig. 9 shows a small reduc-
tion of pressurgnegative correctionin the region of maximum
film, then a sharp increase is found at the minimum film point.
The same kind of arguments apply here as for the wedge case,
concerning the effect of the slope of the pressure and displace-
ment, and the strong effect of the relative local layer thickness.

The complete pressure field is shown in Fig. 10. Again, the
same three cases are portrayed and the same trends are exhibited.

z

Load F *

(a) Slope parameter m

3
k*=0.0, 8*=0.1
' LI

x

Friction F*

Conclusions

: : ; ; ; Continuum based methods are traditionally thought to be of
1 ol b b b b little value in describing boundary lubrication, or the mode of
0 0.1 0.2 03 0.4 0.5 0.6 lubrication in molecular scale films such as occur at asperity in-
teractions during the sliding of nominally flat surfaces. Pure hy-
drodynamic theory predicts no load carrying action in these con-
Fig. 8 Wedge contact load and friction behavior. The cases ditions. In fact, a definition of boundary lubrication is lubrication
shown are (1) no layer, (Il) rigid layer, and (lIl) compliant layer. where lubricant viscosity in bulk appears to play a negligible role
(a) Dimensionless load; (b) dimensionless friction. in contact behavior.

(b) Slope parameter m
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A rhe0|ogica| model has been deve|0ped which is appropriatéZ] G_ee, M. L._,.McGuiggan, P. M, aljld I_sraelachvili, J., 1990, “Liquid to Solid-
to study boundary lubrication in very thin films. The lubricant I,:,Ike;ranSTgS; OL';"O%"’C”'E’”V Thin Films Under Shear,” J. Chem. PI§8,,

: B ] ; : 0. 3, pp. - .
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lecular length scale is the same order of magnitude as the film g75-682.

thickness. [4] Tonck, A., Georges, J. M., and Loubet, J. L., 1988, “Measurements of Inter-
The model contains three property paramet(ér}sthe conven- molecular Forces and the Rheology of Duodecane Between Alumina Sur-
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Viscoelastic Functionally Graded
 w e | Materials Subjected to Antiplane
araineices § Shear Fracture

In this paper, a crack in a strip of a viscoelastic functionally graded material is studied

Z.-H. Jin under antiplane shear conditions. The shear relaxation function of the material is as-
Mem. ASME sumed asu =uo exp(By/h)f (t), where h is a length scale and f(t) is a nondimensional
function of time t having either the formt) =u../ o+ (1 — o o)exp(—tity) for a
Department of Givil and linear standard solid, or ft)=(t,/t)% for a power-law material model. We also consider
o Environmental Engineering, the shear relaxation functiom =uqexp(By/h)/toexp(dy/h)/t]% in which the relax-
University of lllinois at Urbana-Champaign, ation time depends on the Cartesian coordinate y exponentially. Thus this latter model
Newmark Laboratory, represents a power-law material with position-dependent relaxation time. In the above

205 North Mathews Avenue,

expressions, the parameteBs g, .., tg; 6, q are material constants. An elastic crack
Urbana, IL 61801

problem is first solved and the correspondence principle (revisited) is used to obtain
stress intensity factors for the viscoelastic functionally graded material. Formulas for
stress intensity factors and crack displacement profiles are derived. Results for these
quantities are discussed considering various material models and loading
conditions.[DOI: 10.1115/1.1354205

1 Introduction of applying Paulino and Jin’¢[23]) revisited correspondence

Functionally graded materials are the outcome of the need rgncc':glneiggr viscoelastic functionally graded materials to fracture

accommodate materials exposure to nonuniform service require-One of the primary application areas of functionally graded

. . o /aryiterials is high-temperature technology. Materials will exhibit
properties due to continuous change riricrostructural details cyeep and stress relaxation behavior at high temperatures. Vis-
over defined geometrical orientations and distances, such as cQ@|asticity offers a basis for the study of phenomenological be-
position, morphology, and crystal structure. The material gradgayior of creep and stress relaxation. In this paper, viscoelastic
tion may be either continuous or layered comprised, for exampleacture(stationary crackof functionally graded materials is stud-
of gradients of ceramics and metals. In applications involvingd under antiplane shear conditions. Specifically, an infinitely
severe thermal gradients.g., thermal protection systenéunc- |ong strip containing a crack parallel to the strip boundaries is
tionally graded material systems take advantage of heat and dekestigated. The shear relaxation function of the material is as-
rosion resistance typical of ceramics, and mechanical strength autned to take separable forms in space and time, i.e.,
toughness typical of metals. Other relevant applications of func-
tionally graded materials involve polyme@d]), biomedical sys- w= o eXp(BY/N)(1),
tems ([2]), natural composite§3]), and thermoelectric devices hereh is a length scale anf{t) is a nondimensional function of
for energy conversioff4]). Various thermomechanical problemstime t having either the form
associated to functionally graded materials have been studied, for
example, constitutive modeling5—7]), higher order theory{8]), (1) =go/po+ (1 — .. /png)exp —t/ty):  linear standard solid
thermal stressef9,10]), static and dynamic response of plate
([112]), yield stress gradient effe¢f12]), strain gradient theory
([13]), fracture behavioff 14—16), and statistical model for brittle f(t)=(ty/t)9: power-law material.
fracture([17]).

The antiplane shear crack problem has been extensively stu
in the literature as it provides the basis for understanding t
opening mode crack problem. Several numerical and analytical/ w= o exp( By/h)[to exp( dy/h)/t]9,
semi-analytical solutions have been presented considering homo- o ) )
(e.g., [20,21), and bonded homogeneous viscoelastic laye¥s€Xxponentiallyin the above expressions, the paramefergy,
([22]). However, to the best of the authors’ knowledge, theré= lo; & 0 are material constants. An elastic crack problem is
is no published analytical/semi-analytical type solution for thfiSt solved and the “correspondence principle” is used to obtain
problem of an antiplane shear crack in viscoelastic functional e stress intensity factor for the viscoelastic functionally graded

graded materials. This is the subject of this paper, which consi te_rlal. o . .
his manuscript is organized as follows. The next section pre-

1o whom correspondence should be addressed sents the basic equations of viscoelasticity theory of functionally
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF gradEd materials, \.NhI.Ch &?re th.e .baSIS for this St.Udy' Then the

MECHANICAL ENGINEERS for publication in the ASME OURNAL OF AppLiED ~ COIT@spondence principle is revisited and recast in the form re-

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Febcently given by Paulino and Jir23], followed by a discussion of

24, 2000; final revision, July 13, 2000. Associate Editor: M.-J. Pindera. Discussipg|axation functions with separable forms. Next, the antiplane

on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, De p : : . :
ment of Mechanical Engineering, University of Houston, Houston, TX 77204_479"23‘1‘ear prOblem is formulated terther with an mtegral equation

and will be accepted until four months after final publication of the paper itself in tk§0|Uti9n approaCh foracrackin a YiscoelaStiC functionally graded
ASME JOURNAL OF APPLIED MECHANICS. material strip. Formulas for stress intensity fact@s a function

dig also consider the following variant form of the power-law
|%aterial model
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of geometry, material constants, and loadiage derived consid- wheret ,(x) andtx(x) are the relaxation times in shear and bulk
ering both Heaviside step function loading and exponentially dezuduli, respectively, and is a material constant. Particular in-
caying or increasing loading. Afterwards, the recovery of the distances of the above models for graded viscoelastic materials may
placement field is carried out and applied to obtain the actua¢ obtained such that assumpti@ is satisfied. Thus the discus-
crack profile. Several results for the above problem are presenton below indicates the type of revision needed in the general
and discussed. Finally, conclusions are inferred and extensions/isicoelastic models so that the correspondence principle still
this work are pointed out. An Appendix, showing the integraholds.

equation kernel derivation, supplements the paper. . . o
g PP pap + Standard linear solid6). If the relaxation times,, andty are

constants, ifue(Xx) andu..(x) have the same functional form, and

2 Basic Equations if Ko(x) andK,.(x) also have the same functional form, then the
The basic equations of quasi-static viscoelasticity of functiormodel (6) satisfies assumptiofb).
ally graded materials are the equilibrium equation * Power-law model7). If the relaxation timed, andty are

independent of spatial position in mod@), then assumptiofb)

ij,;i=0, M) s readily satisfied. Moreover, even if the relaxation times depend
the strain-displacement relationship on the spatial position in mod¢€¥), then the corresponding non-
1 homogeneous elastic material has the properties
gij=3 (U j+uj), 2
m= e[t ()], K=K(x)[tk(x)]9, (8)

and the viscoelastic constitutive law
) rather thanu = u(x) and K=Kg(x). Thus assumptior(5) is

t de; d - e .
Sij ZZJ p(Xt—7) %da’, U'kk:3f K(X;t_T)%(dT, (3) satisfied again.
0 0
4 Viscoelastic Antiplane Shear Problem

with
N N Under antiplane shear conditions, the only nonvanishing field
Sij=0ij—30wij, €j=&ij 30 (4) variables are
where gj; are stressesg;; are strainss;; ande;; are deviatoric Us(X,t) =w(x,y;t),
components of the stress and strain tensors, respectivebre
displacementss;; is the Kronecker deltax=(x;,X»,X3), m(X,t) ou(X,D=7(XYy;t), oz(Xt)=71,(X,y;1),
and K(x,t) are the relaxation functions in shear and dilatation, 5 )= 1 5 = t
respectively,t denotes the time, and the Latin indices have the 3% =v(X,Y;1),  2eg3(X,t) =y, (Xy;t),

range 1, 2, 3 with repeated indices implying the summation comith x=(x;,X,)=(x,y). Here new notations for the nonvanishing
vention.Note that for functionally graded materials the relaxatiordisplacement, stresses, and strains are used for the sake of
functions also depend on spatial positions, whereas in homogsgmplicity. The basic equations of mechanics satisfied by these
neous viscoelasticity, they are only functions of time,ji&u(t) variables are

andK=K(t) ([24)).

dty  dTy _o ©)
3 Correspondence Principle Revisited ax ay
In general, the correspondence principle of homogeneous vis- W aw
coelasticity theory does not hold for functionally graded materials. VxT ax YyZWr (10)
However, for a class of functionally graded materials with relax-
ation functions of the form t dyy t dyy
~ = M(X,y;t—T)d—dT, Ty= M(X,y;t_T)d—dT. (112)
#(X )= pop(X)F(1), (5) 0 T 0 T
K(x,t):KOR(x)g(t), In the present study, the following three material models are

_ employed. The first is thatandard linear solid(see (6)) with

where uy, and K, are material constants, and(x), K(x), f(t), constant relaxation time

and g(t) are nondimensional functions, Paulino and J28] L 9 i

showed that the correspondence principle still holds. In this case, w=poexp By/h)| — +| 1— _*) exr{ - _” (12)

the Laplace transformed nonhomogeneous viscoelastic solution Mo Mo to

canhbe obtained dlr(lectly from Ithe solutlor; 01_‘ the Co”eSp_ORd"\Qhere,B, Los i, andt, are material constants aids a length

nonhomogeneous elastic problem by replacingand Ko with  gea1e “The second model ispawer-law material(see (7)) with

roPf(p) and Kopg(p), respectively, wherg(f) and dp) are the constant relaxation time

Laplace transforms of f(t) and g(t), respectively, and p is the 1

transform variable. The final solution is realized upon inverting _ ‘o

the transformed solution H=Ho exq/}y/h)( t) ’ (13)
Among the various models for graded viscoelastic materials

the standard linear soliddefined by

aﬁ%e third model is also power-law material(see(7)), but with
position-dependent relaxation time

X, 1) = pe(X) + X) — mo(X)]expg — , to exp(dy/h) @ to)d
(K1) = o (X) + [ pe(X) = s (X)] F{ t,(x) ©) 1= o X BY/N)| ————| =moexr (B+da)y/h]| | .
K (%8 = Ko () + [Ko(X)— Ko (X) Jexa — — (14)
(xH)=K=(x)+[Kx) = Ka(x)]e te(X) |’ where § and q are material constants.
and thepower-law modegiven by 5 Relaxation Functions With Separable Forms
_ (9| _ t ()| The present discussion is based on the main argument that the
HOCD = pel) t] KixD=Kex) t o]’ O<g<1, functional form of the chosen relaxation functignis appropriate

(7) if the basic constitutents of the functionally graded material have
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approximately the same relaxation pattern. Thus this argument

7,(x,07)=7,(x,07), a<|x/<e, (18)

indicates the need for an approach integrating mechanics model-

ing, material properties experiments, and synthessg[25] for a

review of fabrication processes for functionally graded materials

This point is elaborated upon below.
It can be seen ii12), (13), and(14) that the relaxation moduli

w(x,0")=w(x,07), (19)

According to the correspondence princig$ze Section )3 one
can first consider a nonhomogeneous elastic material with the

a<|x| <.

are separable functions in space and time. This is necessary for%HSar modulus

revisited correspondence principlsee Section Bto be applied
([23]). This kind of relaxation functions may be appropriate for a
functionally graded material with its constituent materials havin
the same time-dependence of shear modulus. For nid@glthis
means that the constituents should have the sameuatig, and
relaxation timety. For model(13), this implies that the constitu-
ents should have the same relaxation tignand parameteq. For 2)
model(14), however, it is only required that the constituents hav{e1 : . . .
the same parametet The constituents may have different relax- For the elastic crack problem, the solution consists of a regular
ation times. Potentially, this kind of functionally graded materialgomt'on(for an uncracked strjp

may include some polymeric/polymeric materials such as exp(B) —exp( — By/h)

= po €Xp(BY/h), (20)

nd the viscoelastic solutions for modél?) and (13) may be
btained by the correspondence principle. For the material model
(14) the viscoelastic solution can still be obtained by the corre-
spondence principle provided that the corresponding elastic mate-
rial has the shear moduluys= uqexd(8+qdy/h] (cf. (5) and

Propylene-homopolymer/Acetal-copolymer. The relaxation be- w=w(y)= 0 (21)
havior of Propylene homopolymer and Acetal copolymer are exp(B) —exp(— B)
found to be similar—see Figs. 7.5 and 10.3, respectively, of BuoWo/h
Ogorkiewicz[26]. 7,=0, (22)

=
Another argument potentially in favor of the selected class of Y exp(B)—exp(—pB)

relaxation functlons_(s) is the technique develop(_ad by Lambrosand a perturbed solutiofby the crack satisfying the following

et al. [27] for fabricating large scale polymeric functlonallyboundary conditions:

graded materials. The technique consists of generating a continu-

ously inhomogeneous property variation by selective ultraviolet w=0, y==h, [x|<o, (23)
irradiation of a polyethylene carbon monoxide copolymer. Due to
the fact that the functionally graded material is obtained by con- _ Browo/h -0 _ o4
trolling ultraviolet irradiation time of the same base polymer, we y= exp(B)—exp—B)’ y=0, [x/=a, (24)
conjecture that the viscoelastic behavior of such material may be
predicted by(5). However, further experimental research needs to 7y(x,07)=7,(x,07), a<|x|<e, (25)
be done in order to validate or invalidate the present conjecture. 5

w(x,0")=w(x,07), a<|x|<ee. (26)

The governing differential equation a@f(x,y) for the nonho-

6 Mode Il Crack in a Functionally Graded Material mogeneous elastic materkg0) is

Strip

Consider an infinite nonhomogeneous viscoelastic strip contain-
ing a central crack of length& as shown in Fig. 1. The strip is
fixed along the lower boundary & —h) and is displacedv(t)
=wgW(t) along the upper boundary € h), wherew, is a con-
stant andW(t) is a nondimensional function of time It is sup-
posed that the crack lies on theaxis, from —a to a, and is of
infinite extent in thezdirection (normal to thex-y plane. The

2 =z
Vew+ h 2y
By using the Fourier transform methdgee, for exampl€,28]),
the boundary value problem described by E¢83) to (27)
can be reduced to the following singular integral equatisee
Appendix:

0. 27)

crack surfaces remain traction-free. The boundary conditions 711 2mBw,/h
the crack problem, therefore, are — +K(r,s, s)ds=— ———————,  |r|=<1,
p ks s R g
w=0, y=—h, [x|<w, (15) (28)
w=woW(t), y=h, [x|<e, (16) where the unknown density functiap(r) is given by
7,=0, y=0, |x|<a, a7) 9
e(0)= - [W(x,07) ~w(x,07)], (29)
the nondimensional coordinatesnds are
y
@PO®E OO O ® O O vw-uww r=xia, s=xla, (30)
respectively, and the Fredholm kern€l,s,p) is
h o<
k(x,x’,ﬂ):aj P(x,x",&,B)d¢ (32)
0
h

with P(x,x’, ) being given by
P(x,X',&B)=[E(N(BIN)?+4£°=28) — 2(BIh?+2€%)
x exp(— v BZ+4h2E2)
—E(26+\(BIh)*+4€%)
X exp(— 2%+ 4h%g? )]

Transactions of the ASME

Fig. 1 A viscoelastic functionally graded material strip occu-
pying the region |x|<e« and |y|<h with a crack at |x|<a and
y=0. The lower boundary of the strip  (y=—h) is fixed and the
upper boundary (y=h) is subjected to uniform antiplane dis-
placement wyW(t). The symbol © indicates an arrow perpen-
dicular to the strip plane and pointing toward the viewer.
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sin (x—x' Moo t Moo 1
y (x=x)¢] - F(t):_exp(,t_)+(1,_)t =

{1—exp(—2\p*+4h*E%)V(BIh)*+ 47 Ho L Fo/to™ ML
As expected, in the limit oh— (free spaceand 8—0 (homo- toxd — Ll -t exd — - (40)
geneous material casewe obtain thatP(x,x’,&,8)—0. More- 0 L L to/ |’
over, the kernel g,x’,B) is symmetric with respect t8. Such
symmetry will be addressed later in the paper. The funcgion)  for the standard linear solid12), and
can be further expressed as

_ 3 to)® 1 [Yto\ t—7
e(r)=¢(r)/y1-r?, (33) Fi)=|—| —— | |=| exp — —|dr, (41)
t tL 0 T tL

where ¢(r) is continuous for e[ —1,1]. Whene(r) is normal-
ized byw,/h, the elastic Mode IlI stress intensity factégy, , is

X

for the power-law mode(13).

obtained as For thepower-law material with position-dependent relaxation
Wy time (14), the stress intensity factor is
Kili=— o >h Vmray(l,6). (34)
W,
Here, the notation)(1,8) is adopted to emphasize the dependence K= _Mo(z—g vmray(l,6+qd)F (1), (42)
of (1) on B.

7 Stress Intensity Factors whereF(t) is given in(41).
The stress intensity factors for viscoelastic functionally
graded materials satisfyings) can be obtained using the cor- 7.2 Stress Intensity Factors for Heaviside Step Function
respondence principle between the elastic and the Lapldgeading. For the Heaviside loading conditions,
transformed viscoelastic equations. Thus, formulas for stress in- o
tensity factors are derived first for general time-dependent load- W(t)=H(t)—W(p)=1/p, (43)
ing, and then the results obtained are particularized for exponen-
tially decaying or increasing loading and Heaviside step functiaghere H(t) is the Heaviside step function. The stress intensity

loading. . ' _factors then becoméf. (39))
As stated above, for nonhomogeneous viscoelastic materials,

the Mode Ill stress intensity factoK;, , can be obtained by Wo
means of the correspondence princigleee Section 3 The K”,:—,uo(—
upper boundaryy=h of the strip is subjected to an antiplane 2h
displacemenivW(t), as illustrated by Fig. 1. In this case, the L

stress intensity factors for material modék), (13), and (14 WhereF(t) is given by

Jmay(1,8)F (1),

will be .
Moo Moo
Fit)y=—+|1-= -, 44
K|||:*M0(% Vray(1,8) L7 ® Mo MO)GXF{ tO) 49
P P p]— for the linear standard solid12), and
- ——|W 35
e T e pﬂ/tJ (p)]’ (39) to) ¥
Wo o F(t):(T) (45)
K”.:—uo(ﬁ Vray(L8) LN (1-q)pW(p)], (36)

for the power-law mode(13).
and Finally, the stress intensity factor for thepower-law

W _ material with position-dependent relaxation tirtied) is given by
Kl..=—no(ﬁ Vrap(1,8+45)L M (1-q)p"W(p)],  (cf. (42)
(37) W,
respectively, wherg is the Laplace transform variablg, * rep- K= —Mo(% Vray(1,8+qd)F(t),
resents the inverse Laplace transfok(,p) is the Laplace trans-
form of W(t), andI'(-) is the Gamma function. whereF(t) is provided in(45). It is seen thatj and & (parameters

describing the position dependence of the relaxation tiafect
the stress intensity factor only through the combined parameter

(B+49).

7.1 Stress Intensity Factors for Exponentially Decaying or
Rising Loading. Consider as an example

W(t) = exp( —t/t,)—W(p) =1/ p+1/t,) (38)

where t, is a constant measuring the time variation of the

load. Note that, >0 represents an exponentially decaying load8 Crack Displacement Profile
while t, <0 corresponds to an exponentially rising load. This kind
of time-dependent loading has been used by Brolp2ey The
stress intensity factors under the loading conditi@®) then

Accurate representation of the crack profile is relevant in frac-
ture mechanics, especially when the crack-surface displacement is
measured experimentally and correlated with results obtained by

become numerical methods. Thus the crack displacement profile for the
Wo problem illustrated in Fig. 1 is recovered in this section. First,
K= *,uo(% \/ﬁz//(l,ﬁ)F(t), (39) general time-dependent loading is considered, and then the formu-
lation is particularized for the Heaviside step function loading and
where the exponentially decaying or rising loading.
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It follows from Egs. (29) and (33), and the correspondence 1 1 [weW(t)] [

principle, that the crack-sliding displacement under the time- w(x,0")= 5 [w]+ T{TU Ka(X,x") @(x")dx’
dependent loadingwoW(t), can be expressed by the density . -a

function ¢(x) or ¢(r) (normalized byw,/h) as follows:

[W]=W(x,0") ~W(x,0") 1 woW() (a) [t Ws)
) r (46) _E[W] + e F J_lkd(r ,S) \/?Szds,
_ oW X’ =woW(t 3) v 47)
= 7a(p(X)X_WO ()h 71@ S.

The displacement at the upper surface of the crack is given bywherekgy(x,Xx") is

|
[~ B+2B exp(— VBZ+4h?E%) — Bexp — 2B+ 4h7E) ] ><Sir[(X—X’)§]

Kq(X,X")= dé. 48
dxx0= ] JBINZ+ 48 1—exp — 2B+ 4028 £ ¢ (48)
[
Note that the displacements are not symmetric with respegt to N
(see Fig. 1, however, the stress intensity factors &t (28) and —y(1,8)=— 2 a . (55)
(32). The displacement at the lower crack surface is then given n=1
by

In the following numerical calculations, it is found that 20
w(x,07)=w(x,0") —[w]. (49) collocation points lead to a convergent stress intensity factor

: L . result.
In expressiong46) and (47), W(t) is given in (38) for the It is known from (39) that the stress intensity factor is a multi-

exponentially decaying or rising load. For the Heaviside st&fjfication of three parts. The first term is a dimensional base,

function load,W(t) is given by(43). wo(Wo/2h) J7ra, the second term is a geometrical and material
nonhomogeneity correction factor; ¢(1,8), which can be ob-

9 Numerical Aspects tained from the numerical solution of singular integral Eq. (28),

To obtain the numerical solution of integral E@S), y(r) is and the third term is the time evolution of stress intensity factor,

expanded into a series of Chebyshev polynomials of the first kin['é(t)’ which is obtained analytically from the inverse Laplace

. . . X ansform.
By noting the relationshig33) betweene(r) and #(r), ¢(r) is : : . L
expressed as followErdogan et al[28]): Note that, according to Fig. 1, the crack is located at midheight

of the material strip and the origin of the coordinate systemy)
1 * is located at the center of the crack. Such choice of reference
o(r)= —z a,T.(r), |r|s1, (50) system introduces certain symmetries in the solution, which are
Vi-r?i=a discussed in the examples below.
whereT,(r) are Chebyshev polynomials of the first kind aamg
are unknown constants. By substituting the above equation it Results

integral Eq.(28), we have Numerical results for stress intensity factors are first obtained

* 7AW, /h for a homogeneous elastic stiigee Fig. 1. According to Table 1,
> {(7U, (1) +Hy(r)}ay=— ——————— |r|<1, the stress intensity factors are found in good agreement with those
n=1 exp(B8) —exp(—B) reported in the literature, e.g., the handbook by Tada dBl.

(51) Furthermore, for a homogeneous viscoelastic strip, it is evident
whereU,_,(r) are Chebyshev polynomials of the second kindat the stress intensity factor is given €88) with =0 andF(t)

andH,(r) are given by is given by(40) and(41) for the exponentially decaying or rising
loading, and by(44) and (45) for the Heaviside step function
| Jl " ) T.(s) q loading. Note that the functioR(t) is not related to the nonho-
H.(r)= ak(r,s, S. 52 i
n( . (r,s,B N (52) mogeneous material paramej@r

Figure 2 shows normalized stress intensity fadi®ee (39)),
To solve the functional Eq51), the series on the left side is first —#(1,8), versus the nonhomogeneous paramgieronsidering
truncated at thélth term. A collocation technique is then used andfarious strip thicknessels/a for the linear standard solifl2)
the collocation pointst;, are chosen as the roots of the Chebyand the power-law model with constant relaxation ti{h®). Note

shev polynomials of the first kind that although the relaxation times are different for both models
-7
ri=cos—s——, 1i=12,...N. (53) ) )
2N Table 1 _Mode Il stress intensity factors  (SIF) for a homoge-
The functional Eq(51) is then reduced to a linear algebraic equa?®®!s SUP
tion system SIF SIF
N h/a (this study ([30])
D {mU, 1 (r)+H(r)}a mpwo/h 05 0.5360 0.5631
UL (1 i =, . . .
oy T IS exp(B) —exp(— B) 1.0 0.7598 0.7641
) 15 0.8626 0.8634
i=12,...N. (54) 2.0 0.9136 0.9138
) . . 5.0 0.9840 0.9840
After a,(n=1,2,...N) are determined, the nondimensional 10.0 0.9959 0.9959

stress intensity factor-¢(1,8), is computed as follows:
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Fig. 2 Normalized Mode Il stress intensity factor versus non-
B for various strip thick-
nesses considering the linear standard solid and the power-law

homogeneous material parameter

material with constant relaxation time

2.0

Figure 3 shows normalized stress intensity fadigee (42)),
—(1,8+9d), versus the nonhomogeneous paramgtéar vari-
ous strip thicknessel/a and threeé values for the power-law
model with position-dependent relaxation tirfigl). The effect of
spatial position dependence of the relaxation time on the stress
intensity factor is reflected through the parameieifhe param-
eterqis taken as 0.4 in all calculations. Thus the curvesster-1
may be obtained from the curv&=0 by shifting this curve by
B=70.4. It is clear from Fig. 3 that with respect to the corre-
sponding model with constant relaxation tiffie., 5=0), a posi-
tive & lowers the stress intensity factor wh@»0 and increases
the stress intensity factor fg8 less than—0.5q6. A negativeé
lowers the stress intensity factor whe#<0 and increases the
stress intensity factor fog larger than 0.§6.

Figure 4 illustrates the time evolution of normalized stress in-
tensity factors,F(t), considering both Heaviside step function
loading and exponentially decaying or rising loading for the stan-
dard linear solid(see(40) and (44)) and the power-law material
(see(4l) and(45)). The ratiou., / ug is taken as 0.5 in all subse-
quent calculations for the standard linear solid. It is evident that
under the fixed displacement condition, stress intensity factor de-
creases monotonically with increasing time for Heaviside step
function loading and exponentially decaying loaditiigs. 4a)

(cf. Egs.(40) and (41), or Egs.(44) and (45)), they do have the and 4b)). For exponentially rising loading, however, the stress
same solution—¢(1,8) (see Section B The stress intensity intensity factors will increase with time for longer timéBigs.

factor decreases with increasitg| for all thickness casesh(a)

4(c) and 4d)). By observing the plots in Figs.(d) and 4b), one

considered. The stress intensity factor is lower than that of tetices that, for exponentially decaying loading, the stress inten-
corresponding homogeneous matefjg=0). It is noted that the sity factor can become negative as the ratitt, decreases, which
stress intensity factor is an even function gf However, this occurs, for example, fot, /t,=1.0. This happens because of
symmetry is valid only for the crack located in the center of thetress relaxation for long-time behaviddote that a negative

strip.
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(b) Nondimensional time t/t_0 (d) Nondimensional time t/t_0
Fig. 4 Time variation of normalized Mode Il stress intensity factor (a) standard linear solid (decaying

loading ); (b) power-law material (decaying loading ); (c) standard linear solid (rising loading ); (d) power-
law material (rising load )

associated to a Mode Il crack, and not a Mode | (or mixed mode) Figure 7 presents the normalized stress intensity factws
crack Thus, in the present study, a negative stress intensity factaalized by uo(wy/2h)J7a) versus time for exponentially rising
is allowed without violating the crack face traction free conditoading for the standard linear solidee(39) and(40)). Compar-
tion. The crack faces do not close, they just slide in the opposiigy this figure with Figs. &) and Ga) (Heaviside step function
direction. loading and exponentially decaying loadingne observes that

Figure 5 illustrates the normalized stress intensity facldes- e time variation of stress intensity factors show a convex shape

malized by Ho(Wolzh)W?) versus time for Heaviside step; Fig. 7 while it shows a monotonically decreasing trend in Figs.
function loading considering the following viscoelastic materi (@) and 6a)

models: standard linear solitkee (39) and (44)), power law . i - .
material (see (39) and (45))‘615&”5 p)ower-lgw))mzterial with Flgure 8 s_how_s crack profiles fo_r the He_aV|S|de step function
position-dependent relaxation tinfeee (42) and (45)). A finite Ioadln_g co_nS|der|r_1_g the standard linear §0I|d_ and the power law
thickness strip withh/a=2.0 (Fig. 1) is considered. Note that, Material with position-dependent relaxation tirteee (46), (47),

for all the models, the stress intensity factors decrease monototitd (49)). A finite thickness strip geometry with/a=2 (Fig. 1)
cally with increasing time. The first two models are investigateié considered. The former modgtig. 8@a)) is investigated for the

for the nonhomogeneous paramefer0, 1, 2 with =0 cor- nonhomogeneity parametge=0, 1, 2 with3=0 corresponding to
responding to the homogeneous material case. Due to the symithe- homogeneous material case. The latter mogigl. 8(b)) is

try of stress intensity factor abowg, the stress intensity factor investigated fo3=2 andé=—1, 0, 1 with =0 corresponding to
for p=—1, —2 are identical to those fop=1, 2, respectively. position-independent relaxation time.

Moreover, the stress intensity factor decreases with increasingrigure 9 shows crack profiles for the exponentially decaying
|Bl- The last model is investigated fg@#=2 and 6=—1,0,1 with |oading considering the standard linear solid and the power-law

5=.0 corrgsponding to positi.on-ind.ependent relaxation t.im.e. F?rﬁaterial with position-dependent relaxation tirfsee (46), (47),
this special case, the stress intensity factor decreases with incr (49)). As before, a finite thickness strip geometry witha

ing 8. This is becaus@+qd is positive for theB and 6 values —2 (Fig. 1) is considered. The former mod@tig. 9a)) is inves-

considered. . )
: : : : : tigated for the nonhomogeneity parameget2 andt/to=1, 2, 3.
Figure 6 illustrates the normalized stress intensity factoos- . o . 0
9 y The latter modelFig. 9b)) is investigated for3=2, =1, and

malized byuq(wy/2h) /7a) versus time for exponentially decay- ; il
ing loading considering the following models: standard linedfto=1, 2, 3. A comparison of all the plots in Figs. 8 and 9
solid (see(39) and (40)), power-law materia(see(39) and(41)), Permits to evaluate the corresponding crack profiles for various
and power-law material with position-dependent relaxation tini@aterial models and various parameters. This information is po-
(see(42) and(41)). The same qualitative observations for Fig. 3entially valuable when correlated with fracture experiments, e.g.,
also hold for Fig. 6. crack-sliding displacement measurements.
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Fig. 5 Normalized Mode Ill stress intensity factor versus time:
Heaviside step function loading, (&) standard linear solid; (b)
power-law material; (c) power-law material with position- ) . . . .
dependent relaxation time Fig. 6 Normalized mode lll stress intensity factor versus time:
exponentially decaying loading, (&) standard linear solid; (b)
power-law material; (c) power-law material with position-
dependent relaxation time

11 Concluding Remarks and Extensions

This paper illustrates an application of Paulino and Jj23]
revisited correspondence principle to fracture mechanics of vinsity factors and crack displacement profiles are provided. Sev-
coelastic functionally graded materials. An effective integraral numerical results for these quantities are presented consider-
equation method for antiplane shear cracking in viscoelastic funiog various viscoelastic material mode(s.g., standard linear
tionally graded materials is presented. The elastic functionaléplid, power-law model with both position-independent and
graded material crack problem is solved and the correspondempasition-dependent relaxation tignand loading conditions. It is
principle between the elastic and the Laplace transformed vigportant to remark that the solution of the fracture mechanics
coelastic equations is used to obtain stress intensity factors fwpoblem with prescribed displacemefsee Fig. 1 is different
viscoelastic functionally graded materials. Formulas for stress iftem the solution with prescribed tractidof. Erdogan[15,20).
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Appendix

In the following, a relatively detailed derivation of integral Eq.
(28) is given, which refers to the Mode Il fracture mechanics
problem illustrated by Fig. 1. By using Fourier transform, the
solution of the basic Eq27) can be expressed as follows:

+A, ex;{_ 32_ m ;/H

—— displacement at upper face
- - - - displacement at lower face

Normalized crack face displacement

0.0 . . .
-1.0 -0.5 0.0 0.5 1.0

(b) x/a

Fig. 8 Crack face displacements: Heaviside step function
loading, (a) standard linear solid; (b) power-law material with

1 * —B+m
position-dependent relaxation time w= \/i f [Al ex;{'g y
27 J -

2 h

xXexp —ix&)dé,  y>0,
This work offers promising avenues for further extension.

For instance, it may be used to calibrate numerical metkeds, 1 (= —B+my —B-my
finite element method and boundary element methiod vis- w= —J [B1 ex;{z h +B, ex;{z h”
coelastic functionally graded materials. Moreover, the discussion V2T J -

on relaxation functions of separable forms in space and (Bee-
tion 5) indicates the need for micromechanics models for vis-
coelastic behavior. Other relevant topics associated with thi% .
work also deserve further investigation. Such topics incliele: WNe€reA1, Az, By, andB; are unknowns, anthis
investigation of antiplane shear cracking in bonded viscoelastic

Xexp —ix&)dé,  y<O, (56)

layers where one of the layers is a functionally graded material; m=m(&)=\B°+4h%¢. (57)
(b) extension of the antiplane shear crack model to Mode I cracks.
These topics are presently being pursued by the authors. The stressr, is obtained from(56) by Hooke’s law,
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ow
Ty= Mo exp(By /h) W

::Moexﬁﬁy/h)f*
2z ).

~p-m [-g-my
+ >h A, EXF{ > H

—B+m —B+my
T 2 h

}exp(—ixg)dg, y>0,
ow

7= o eXp(BY M) 2
_ Hoexp(By/h) F
N e

—B-m —B-my
+ >h Bzex;{ > h

—B+m
2h

—B+tmy
Bl“%‘??‘ﬁ

]exq—ixg)dg, y<O0.

(58)

By using the boundary conditior{3) to (26), the unknown,,
B,, andB, can be expressed [, which is given by

Al—é[l—exp(m)—[l—exp(—m)]

— B+m+(B+m)expm)
— B+ m+(B+m)exp —m)

1 a
X —= x")exp(ix' &)dx’, 59
@faw( Jexp(ix’ §) (59)
where o(x) is the density function defined by
J

e(x)= - [W(x,0") = w(x,07)]. (60)

Further, the stress, aty=0 is expressed by(x) as
o [T 2 ke Ndx (61
Tyly-0=5— _am+ (X,x",8) |(x")dx (61)

wherek(x,x’, ) is given in(31). By substituting the above ex-
pression into the boundary conditié®4), the integral Eq(28) is
deduced.
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Rupture of Thin Power-Law Liquid
Rama Subba Reddy Gorla Fllm onad cvllnder

Mem. ASME

Department of Mechanical Engineering, The dynamic rupture process of a thin power-law type non-Newtonian liquid film on a
Cleveland State University, cylinder has been analyzed by investigating the stability to finite amplitude disturbances.

Cleveland, OH 44115 The dynamics of the liquid film is formulated using the balance equations including a

e-mail: gorla@csaxp.csuohio.edu body force term due to van der Waals attractions. The governing equation for the film

thickness was solved by finite difference method as part of an initial value problem for

spatial periodic boundary conditions. A decrease in the cylinder radius will induce a

stronger lateral capillary force and thus will accelerate the rupture process. The influence

of the power-law exponent on rupture is discuss¢®Ol: 10.1115/1.1355033
Introduction therefore has been used in this paper. Wienl, the model

describes pseudoplastic behavior whergad represents dilatant

S.tudy Of. the rupture of t.hm liquid .fllms has been motlvated bEehavior. More details on the classifications of non-Newtonian
the m_dustrlal appll_catlons in many Q'Spefse. and_collc_)ld systemsdf; ¢ may be found in Skellanib]. Sathyaga[6] used a linear-
chemical, mechanical and biomedical engineering fields. When) d analysis to predict the critical thickness of rupture for a

liquid layer becomes ultra thii100—1000 A, it becomes un- 3 P . :
stable. The instability is due to the van der Waals potential arﬁtgmfgégrvaggggsfgpt'hg V;?é]ge?nnd Chanfy] investigated the

results in the rupture of the layer. Ruckenstein and fistudied 1, o2 ctical applications, there are many superslender cylinders

the spontaneous rupture of a liquid film on a planar solid wall, o, a5 optical fibers with radii less than & If the thickness
The liquid film was modeled by them as a Navier-Stokes COR 4 |iquid coating film is ultrathif100—1000 A, then the van der
tinuum with a potential due to the van der Waals interactiongyaga|s potential may affect obviously the stability of this film flow
They used lubrication approximation to obtain the linear dynamigstem. A review of the literature indicated that no one until now
instability results. From this analysis, one can obtain rough esﬁ'as addressed the question of how the thin power-law type non-
mates for the rupture time, namely, the time needed for the thifewtonian liquid film on a cylinder ruptures in the presence of
film to attain zero thickness at some point. William and D42l  van der Waals forces. The present work has been undertaken in
examined the nonlinear evolution equation and numericalptder to investigate this problem. We are interested in the specific
treated it as an initial value problem with periodic boundary cofyorking regimes of the parameters, where it will be possible to
ditions. Their results indicated that the nonlinearities of the systesfedict rupture or dry out of the thin film. This will be accom-
would accelerate the rupture phenomenon. plished by solving the equations of thin film motion. A long wave
Cheng and Chanfg] considered the stability of thin liquid film theory is formulated for the nonlinear dynamic instabilities of the
on a cylindrical surface. Brochafd] discussed the spreading ofthin film. Examples of power-law fluids that might be of interest
liquids on thin cylinders and found that for volatile liquids, then the thin film applications are polymers, lubricants, paints, and
vapor would adhere to the cylinders and showed two differepiological fluids.
ways to prevent the Rayleigh instability from developing on fibers
coated with a liquid film.
All the previous studies were concerned with Newtonian fluidg\nglysis
There exist relatively few studies concerning the non-Newtonian

fluids, which are important in connection with plastics manufac- IW(cej cor\}ilderhthe flowdof(? th'tr.] I|qut|d tf)”m alolr;gl a r:jorlzontall
turing, lubricant performance, applications of paints and mov ylinder. \We choosa andy directions 1o be paraflél and norma

ment of biological fluids. Non-Newtonian fluids generally exhibi 0 the cylinder, respectively, as shown in Fig. 1. We assume the

a nonlinear relationship between shear stress and shear rate. Tﬁggéactenstlc thickness of the film to lbg and the length scale

fluids may be classified as inelastic and viscoelastic. The inelasti rallel to the film to bel. The aspect ratio Is given bf

. o ; > .. “=hgy/L. If we assume thaf<1, we have a thin film. Assuming
fluids may be subdivided as time-dependent fluids and in tim at the liquid is a power-law fluid. we mav write
independent fluids. The time-dependent fluids, in turn, are subdi- q P ' y
vided into two groups: thixotropic and rheopectic. The time- 7-”-=m|'yij|”’1'yij (1)
Insdeeupdeondlggtticglzl;I?jﬁat;?]r: bt;?] a\s/lijot;?:lé,\)”dB(ier? r:gtnc: f%lgzicgrgﬁg where 7;; is the stress tensofy; is the rate of strain tenson, is
P plasticl<) : 'gham p ' the power-law exponent, am is the viscosity index. We now
pseudoplastic with yield stress. Inelastic time-independent non: : .

) . : . se the following length scales:

Newtonian fluids have received the greatest attention from rheolo-
gists which has resulted in the development of a number of equa-  time: [ho(phf/m)*n=2)]
tions or models proposed to represent their flow behavior. The ]
Ostwald-de Waele power-law model represents several inelastic length:  [ho]

time-independent non-Newtonian fluids of practical interest and velocity (Uy): [(phglm)l’(”’2>]

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF pressure and stress:[ p(phf/m)(=2)7],
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED o . .
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, May The liquid layer is assumed thin enough that van der Waals
7, 1999; final revision, Nov. 2, 2000. Associate Editor: J. T. Jenkins. Discussion §grces are effective<<~0.1 um) and thick enough that a con-

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi PO . . . _
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arr?cqﬁmum theory O_f the |IQUId IS appllcable‘ The dimensionless con
will be accepted until four months after final publication of the paper itself in thé€rvation equations of mass, momentum and angular momentum
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Fig. 1 Flow model for the thin film flow
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In the above dimensionless equationsand v represent the
velocity components i andy directions, respectively the pres-

[((ah)zau av) (au m;)ah
2| —| —+—|-|—+—|—
ax) ax = dy dy  ax] ax

L oh\?
Tlox
L oh\?
as #?h Tlox
2 (aty)
== 2h\ 21372 p (10)
1+ X
where
S=¢/3h,D (11)

dimensionless surface tension. Our aim here is to solve for the
stability of the liquid film while including the effect of van der
Waals forces.

We now apply the long-wave theory to study the stability
problem. When the layer is thinner than a critical value, small
disturbances begin to grow. These waves have wavelengths much
larger than the mean thickness of the layer. Defining a small
parametelk that is related to wave number of such disturbances,
we may rescale the governing equations by order of magnitude
considerations:

X=«x; Y=y; 7=k%; Vo=« "2y
U=«"3u; V=«"%; P=«?p. (12)
We assume tha#/9X,d/dY,dld7=0(1) ask—0. Given thatU
=0(1), Eg. (3) indicates thatV=0(«x). We now letp, i,
=0(1/k) ask—0.
We now assume the following expansions for the flow field:
U=Ug+«?Us+ ...
V=Vy+k?Vi+ ...
P=Po+x?P+ ... (13)

\Po: K72¢.

sure andy the potential function describing the van der Waals 1pq governing equations and the corresponding boundary con-

forces. We follow Williams and Davif2] and write a modified
expression fory:

ditions for the zeroth-order problem may be written as

-3 Mo, Moy 14
y=Ah"3. (5) X Ty (14)
In the previous equ_ation, th_e van der Waals for_ces are represented dUe\"" LUy Py oV,
through the potential functiod and A’ is the dimensional Ha- Ny v —X+ X (15)
maker constantA is related to the Hamaker constaht as J J J J
/ o o (16)
A= 6mphiD where D= p(phgy/m)#n-2), (6) aY
The boundary conditions are given by
The boundary conditions along the solid plane wall are given by
YZO: U():VO:O (17)
=0: u=v=0. 7
y v 7 aUg
At the fluid interface, we have the kinematic condition: Y=h: WZO
sh  ah #h  3S(a—h)
= . —+u—=v. =-3S—0———
y=hx): —-+u—=v (8) Po=—3S-%7 2
The continuity of tangential stress on the interface requires oh dh
—+Ug—o=V,. (18)
ar %x 0
. Ju
y=h(x): W:O- 9) The solutions for the velocity field are given by

The continuity of normal stress at the interfage h(x,t) be-
comes

Journal of Applied Mechanics

n dPgytm

m&_x {_(h_Y)(n+l)/n+h(n+1)/n} (19)

U0:
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V e
% (n+1) X IX* Film Profile at Rupture time
n nh(2n+l)/n
X _ (2n+l)/n+ (n+1)/ny _ |
2n+1(h Y) h Y (2n+1) 1.5
n Py M gh
+ —_— JR—
(n+1) X X
X h(n+1)/n,((hfy)(n+l)/n+ n+1hl/nY)} (20)
n
where c
Po=—(Po+ ). (21)
#*h 3S(a—h))
PO_(_gsW_ —Z (22)
Similarly, expressions),, v;, and p, may be derived. These v
expressions are not used in the computations and they are v
long. Therefore, they are not reproduced here. Using equatic 05-
(14)—(22) we may show that the leading order evolution equatio .
for the film rupture is given by
oh . Ssa3h L asa 2y 3A ah]“” (s N
s N3 a T ow ~ -1.0 1 l ] i
o X h™ ax X 0 0.2 0.4 0.6 0.8 1.0
1 h 3A gh\(-nm
= — - + 72+ —_— Zﬂj m)
Znt1) | 3Soxa 358 T g ax) Xzl
o*h , J (1 oh Hene D Fig. 2 Film thickness distribution at the rupture time
X 35@4‘35& +3AR FR (23)
subject to initial conditions

Figure 2 shows the initial disturbance introduced and the film
h(X,0)=f(X). (24) profile at the time of film rupture. It may be noted that the film
thickness is zero at rupture and negative thickness has no physical
Equation(23) governs long wave interfacial disturbances to theneaning. Figure 3 shows that the rupture time increases with cyl-
static film (havingh=1) subject to van der Waals attractions. inder radius.
Figure 4 displays the timewise variation of minimum film

Results and Discussion thickness. We observe that the rupture time for the Newtonian

The nonlinear partial differential Eq23) was solved numeri-
cally using the finite difference method. Central differences were
used for space variable and the midpoint rule was used for tirr
The Newton-Raphson method was used to solved the resulti
system of difference equations. The problem was treated as
initial value problem with spatial periodic boundary condition:
within the interval 0<X<2m/qy,.

In order to obtain a solution independent of the grid size, se
eral computational runs were performed to obtain the optimu
step sizes irX and 7 directions. The optimization procedure of th
grid size includes computing the spatial film thickness distributioe
at an arbitrary time, employing a given number of grid points il x
spatial direction. After that the number of grid points is increase
gradually, each time, a computer run was performed to compul:s
the film thickness profile. A residue is defined as the absolu @
difference in film thickness between the two runs. The procedug_
is continued until the residue approaches a value less than 3
X 10", At this point the spatial grid size is fixed. A similar
procedure was followed to choose the optimum time step. Bas
on these calculations, we used spatial grid polits50 and time
stepsA7=0.01 in all the computations. The initial condition was
given by

h(X,0) =1+ Ho sin(guX), (25)

The following parameters were used in the numerical calculatio 1 l I ]
to describe both pseudoplastic and dilatant materials: 80 100 120 140

0<X<2m/qp,.

160

Hy=0.1,0.25; a=80,100,150;n=2,1,0.9,0.75,0.5;
A=0.001,0.002,0.0035=1,2,3.
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Fig. 4 Minimum film thickness versus time Fig. 6 Rupture time versus S

fluid (n=1) is smaller than that for the dilatant fluids¥ 1) but eration effect on the rupture process as the magnitude of the sur-
greater than the corresponding value for the pseudoplastic flufdse tension paramete§ increases. A1 increases, the rupture
(n<1). Asn increases, the rupture time increases. time increases.

Figure 5 shows the variation of the rupture time ver8u3he )
rupture time decreases Asncreases or the van der Waals potenConcluding Remarks

tial increases. Asi increases, the rupture time increases. In this paper, we have formulated a long-wave theory for the
Figure 6 shows that as the surface tension increases, the rupiggiinear dynamic instabilities of a thin power-law type non-
time increases. The strong lateral capillary force induces an acagbwtonian liquid film on a cylinder. Numerical solutions are ob-
tained for the simplified form of the equations governing the dy-
namics of the liquid film. As the radius of the cylinder increases,
the rupture time increases. The rupture time increases with surface
tension parameter and decreases with increasing van der Waals
force potential. The rupture times for the dilatant fluids<(1) are
higher than that of Newtonian fluid where as pseudoplastic fluids
(n<1) are associated with smaller rupture times. Therefore, non-
1.0 Newtonian fluids find an important application where it may be
desirable to maintain the stability of thin films over longer or
shorter periods of time when compared to Newtonian fluids.
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Thermal Deformation of Initially
Curved Substrates Coated by Thin
Inhomogeneous Layers

A. Wikstrom _ _
Thermal curvature changes and membrane strains are analyzed for elastic shallow shell
P. Gudmundson substrates which are coated by thin, generally inelastic, inhomogeneous and anisotropic
Mem. ASME layers. The analysis is restricted to linear kinematics. It is shown that the deformation is
governed by the corresponding solution for a flat substrate and a correction due to the
Department of Solid Mechanics, initial curvature. The correction is determined from a shallow shell problem for the bare
Royal Institute of Technology (KTH), substrate with a loading expressed by the coefficients of thermal curvature for the
SE-100 44 Stockholm. Sweden substrate/layer system. For constant initial curvatures, certain analytic solutions are pre-
sented. For situations when the initial deflection of the substrate is much larger than the
substrate thickness, a boundary layer solution is derived. In the particular case of a
circular isotropic substrate with a spherical initial curvature and a coating of arbitrary
anisotropy, the solution is presented in closed form. For nonflat substrates, measured
curvatures can generally not be used to extract layer stresses without a proper compen-
sation for the initial curvature. In the paper, it is explicitly presented how to accurately
compensate for a spherical initial curvature. The results are particularly discussed in
relation to curvature measurements on Silicon substrafd30Ol: 10.1115/1.1357169

1 Introduction 2 Theoretical Basis

Many engineering applications employ initially curved shells Elastic shallow shell substrates with thin coatings, are modeled
which are coated by thin, generally inhomogeneous and anigiithin the context of linear kinematics. The substrate/layer system
tropic layers. Most common examples include thermal-barrier & assumed to have free boundaries and it is subjected to a tem-
wear-resistant coatings and organic paints deposited on cun@&fature load. Due to thermal expansion mismatch, stresses and
surfaces. In addition, nominally flat substrates, such as Si waféigvatures will develop. The constitutive relation for a shallow
used to fabricate microelectronic chips, may in fact exhibit norghell substrate with a thin layer deposit can be treated as that of a
negligible initial curvatures in response to some processing aR@Mmogenized anisotropic plate.

manufacturing steps. The subsequent deposition of metal intercony 1 ghallow Shell Equations. A Cartesian coordinate sys-
nects and passivating material then builds up a shallow shell wign x _ is introduced. The middle surface of the undeformed shell
a thin coating which belongs to the class of problems that ag& expressed by= — R apXaX 2, Wherek,,q is the initial curva-
investigated in the present paper. While there exists consideraile of the shell and the summation convention is utilized for
information on the mechanics of flat substrates, the deformation@feek subscripts which range from 1 to 2. The condition for a
initially curved substrates with anisotropic layers appears to lséell to be considered sufficiently shallowzigz ,<1. As a start-
relatively unexplored. ing point, the differential equations for an anisotropic linear elas-
In the present paper, the attention is directed towards analysiesshallow shell are consideré&lugge[3] and Leissa et a[4]).
within the context of small deformations of elastic shallow shell The equilibrium equations for vanishing body forces, such as
substrates coated with thin anisotropic and possibly inelastic lagravity, can be expressed as
ers. First it is shown that the analysis can be reduced to a problem N ..—=0 M N.F =0 1
which only involves the initially curved substrate without coating aB.p ap,ap” NapKap™ @)
with a loading in terms of the thermal curvature coefficients of th@here N,z andM,, denote membrane forces and moments per
substrate/coating system. All information about the thin layer sucinit length. The homogenized constitutive law may be written as
as elastic, plastic, and creep behavior are then contained within
the coefficients of thermal curvatures. For constant initial curva- Nap=Rapys(€ys~ @ysT) T Bapys(Kys= BysT) )
tures, closed-form solutions are presented for certain parameter M =B (&5~ a.,;T)+D (k5= BosT)
combinations. Since one of the most common methods used to ap Tapyditys Tyé apyOiTys Fyd
perform mechanical testing of thin film&linn et al. [1]) and whereA ,z,s, B,gys, andD g, represent stiffness tensors of the
unpassivated line@reo et al[2]) is to measure curvature changediomogenized shell element. The parameteys and 8,5 denote
during thermal cycling, the implications of performing curvaturghe coefficients of thermal expansion and thermal curvature of the
measurements on nonflat substrates under the assumption of infiinogenized shell element aifica constant temperature change.
flatness is thoroughly investigated. Specific applications of the kinematics of the shallow shell are described by

results to initial spherical curvatures are addressed. 1 ~
£y5=73(Uy 5T Us )+ Wk, s

©)
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wheree,; represents the two dimensional permutation tensor. wherep}, , represents a prescribed tensor that is independeqt of
The boundary conditions for a free edge read and which at this point may be arbitrarily chosen. For a constant
_ _ _ initial curvature, the remaining system of equations that is valid in
Nagng=0, Mygn,ng=0, Q,n,+Mp =0 ©) the interior of the shell becomes
wheren, ,t, are normal and tangent directions to the boundary,

c _ c _NC ~

respectively, andQ,=M 4 5 is the equivalent transverse shear Nops=0 Magap™Nagkap=0 (11)
force. All tensorial quantities in Eq$_1)—(5) are given in a cur- h3

vilinear coordinate system defined in Blye[ 3] which is specified N25= h(;gﬁy(sgcwS Mzﬂzl_zcgﬁyé"% (12)

by the following transformation:

U = — = T
do,=du,—z,dw, dWw=du,z , +dw (6) ewew( 82&@5_ (Wc_ 5’35“’ x6x¢) T(ﬁ) =0 (13)
wheredll, anddW denote components parallel to the fixed Car- Jap
tesian coordinate system in which the middle surface of the shell K o= W (14)
is expressed. Note that®,; vanish, the problem reduces to the ap ap
flat-plate problem. and the boundary conditions can be expressed as
2.2 Thin Layer Approximation. The thermoelastic proper- NCBnB:o
ties given in Eq(2) for a substrate with a thin layer deposit can be “
expanded as a Taylor expansiondis t/h<1 wheret is the thick- c c * 1 P
ness of the thin layer arfithe substrate thickness. Only terms up Qanat Mnt,t:TTzcaﬁyé(natﬁ)«p%(ﬁvfrgyz?) (15)
to first order are considered here. The expanded thermoelastic
properties can be written in matrix form as c h® o . b
N NgM =T 5ChpysNaNp(Bys— Bs)-
NO+ oN1] [AC+6SAT BY+sB! 12
MO+ oM 1}: B%+ 6B DO+ sD* Three observation&hat would be valid also for a varying initial
curvature can now be made(a) It is sufficient to consider the
x( &'+ 5t T &+ sat ) 7 stiffness matrix of the bare substrate onlly) Regardless of how
K+ Sict B+ 5Bt Q) B4 is chosen, the coefficients of thermal curvature will represent

an inhomogeneous term somewhere in EG4)—(15) and since
he system is linear, the solution will be linear in the inhomoge-
eous term.(c) The membrane and bending state decouple for
zero initial curvaturegflat-plate problemand as will be shown
0 _ 0 0_,0 _p0 _nNO — subsequently also for very large initial curvatufeslarge initial

Sap= Fupls W= Kup=Map=Nos=0 ® curvatﬂre wi%/hin the shallo)\//v shgell theory correspond tgo initial out-
fulfill the equilibrium Eq.(1) and compatibility for the kinematic of-plane deflections which are much larger than the shell thick-
relations stated in Eq4) as well as the boundary conditions inness as well as much smaller than in-plane dimengions
Eq. (5). It is noted that the solution to the zeroth-order problem First, |et,3552/3}w, this means that® represents a correction
also is the solution to the flat bare substrate problem. Since H’@[he f|at-p|ate solution. The boundary conditions become homo-
zeroth-order solution is a pure in-plane strain, the second-ord@¥neous and the inhomogeneous term appears in the interior de-
stresses and strains that develop in the thin layer as a result cﬁption of the p|atqu (13). A physical interpretation of the
temperature change can be solved as a separate problem reggfrection can be made. It is seen that if a consGist chosen as

sented by a thin coating on an infinite elastic half-space. By co— g1 % _ gl % the following equality holds:
puting the volume average stresses in the separate problem, the™ *“ BB Fapapl

where A°, BY, D° o, B° are properties for a bare substrat
without layer. For a substrate which is homogeneous in the thic
ness directiorB®, B° vanish. Hence

coefficients of thermal curvaturg® (8°=0) may be computed eayeﬁaTcyg(,B},(pxoxgx‘P/Z),,XB:eayew(Cx¢ Xp6,508) ap -
through moment equilibriun{Stoney formulg see (Wikstrom (16)
et al.[5]) Hence, the inhomogeneous term in ER) may be transferred to
h2 o N Eq.(12) by the substitutiomcy(;: s%—TCxaxac?ﬁM. The correc-
(0ap) =~ g; CapyoBysT (9) tion problem(save for the resulting straiis therefore equivalent

to a radially symmetric temperature distribution around some ar-

where (o ,5) represents volume-averaged stress changes in thigrarily chosen origin with a constant isotropic coefficient of ther-
layer of thicknesd. The tensocgw represents the plane stresgnal expansion which is proportional @ This analogy makes it
stiffness tensor of the bare substrate, and the middle surfae Vvery easy to solve the general anisotropic problem with commer-
chosen as the midplane of the substrate. For a flat substrate wigially available finite element codes. As a special case it is ob-
thin coating, the thermal curvature changes; will equal B.,T.  served thaw®=0 ande,=0 represent the exact solution when
Hence a measurement of curvatures will through &.enable -
estimates of volume average layer stresgdmn et al.[1] and __a = Lo gl V=
Yeo et al.[2]). Therefore, prgovidgd that a sufficiently small rep- 2 Poe X(’X“”) Qﬂkw T(Baak g~ Bagkap) =0-
resentative part of the layer can be chosen, the effects of plastic- ' 17)
ity, creep, crystal directions and so on may be includeg’in

In order to analyze the first-order problem, the following subé
stitutions are made:

€4y8ps

As an example of this situation one could consider an initial
ylindrical shapd’kq1,# 0, k2="%1,=0) and a thin layer consist-
ing of a periodic pattern of unpassivated parallel lines with a
elp=Talgtel, NL =Ny wl,=TBhs+xS, geometry such thatgi,#0, B3,=B1,=0). This situation can

e cross-sectional shape (s ohosen approprately. see Wik,
Mip=—T 15Casys( B35~ Bs) T Mip (10) (5] ’
Secondly, ﬁzﬁ may be chosen such that the deflectian

= —T,Bzﬁxaxﬁlz fully represents the behavior in the interior of
the shell for large initial curvatures. The inhomogeneous term

1_ T P c
wr=— EﬁaﬁxaxBer
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then only appears in the boundary conditions. In this caSend Xy

siﬁ represent a boundary layer correction to the solution for very

large curvatures. This boundary layer solution is presented in

closed form in the Appendix. However, first the proper choice of

,BZB must be determined. For a given initial curvature, two con- A

stant nonzero linearly independent solutiokS; and 55 can x)
always be chosen such that they fulfill the compatibility equation

(cf. Eq.(17)):

c1C2~ cic2~ _
K Kgp— K Kap=0. (18)

aq @

They can be used to represent the solution that is valid in the inner
part of the shell. Once the solutions have been chosen, they can be
ortho-normalized such that

h3 h3

Cl~0 Cl_ C2~0 C2_ Cl~0 C2_
1—2KaﬁCaﬁ75Ky5—l Tzkaﬁcﬂﬁyﬁkyﬁ—l Ka5Capyskys=0.

19)
) ] Fig. 1 Geometry of a substrate with spherical initial curvature.
The most general compatible curvatures that fulfill E§8) The curvilinear coordinate system is indicated.
may then be expressed as

Kip=T(D1xS5+Dok55). (20)
- : - BP.=pBL, (zero initial curvaturg
In order to determin®, andD,, the potential energy is con- ap™ Pap (25)

sidered. For large initial curvatures, the contribution from the P 111 N
boundary layer can be neglected. The potential energy may then Bup=PBap™ 2Pyy00p (Very large initial curvaturg
be written as The difference between the two alternatives is just a radially sym-

1 ( he metric term that may be added or subtracted afterwards. The

= _f_,(zﬁcgﬁ s(K%s— BLsT)AS (21) choice is arbitrary, howeveﬁzﬁzﬁiﬂ is selected here since a
2 Js12 Tee correction to the flat plate solution may have more physical sig-

L ) nificance. The boundaries are free and the only inhomogeneous
whereS denotes the arbitrarily shaped shallow midsurface of thg,n, appears in Eq13) and it reduces to

shell. Minimizing the potential energy with respectq andD,

yields T(BaaRps ™ Bagkap) = TRBoa (26)
h3 3 It is observed that even if arbitrary coefficients of thermal curva-
Dlzl—zxgécgﬁwﬁié DZZTZKSECﬂBy&B%. (22) ture are permitted, the correction problem exhibits radial symme-

try since 8%, is constant and invariant during a change of coor-
Thus, in order to divide the solution into an interior part and dinates. The angular dependence of the solution to this first-order
boundary layer, the prescribed coefficient of thermal curvatupgoblem is thus entirely contained within the prescribed part of the

should be chosen as solution. This makes it possible to find a closed-form solution to
o o1 . the problem.
Bap=Dikgpt+ Doy (23) A stress function is introduced such that
The complementary boundary layer solution is presented in the Niﬁzeweﬁgbfﬁ. 27)

Appendix for the case of an anisotropic shell of arbitrary in-plal
shape and large initial curvature.
The total solution can be assembled as a sum of solutions to

nlgor a constant temperature change, the first-order problem given
gyeEqs.(ll)—(M) may for an isotropic substrate be reduced to

problem of zeroth and first-order, respectively. The error in this V2V2pC—KEhV2WS= —%EhTBL ,

approximation is of orde©(8?). Observe that so far, no restric- “ (28)

tion is placed on the type of layer used or the shape of the Eh*V2V2we+ c*kV20°=0

boundary. with boundary conditions expressed in polar coordinates
2.3 Substrates with Spherical Initial Curvature. An iso- we(0)=N%a)=M%a)=0 MS(0),N%(0) finite (29)

tropic spherical cap coated by a thin, possibly inelastic, aniso-

tropic layer is now considered. The aim is to determine how amhereV? is the Laplace operator and the constaiig defined as
initially curved, stress-free substrate with free boundaries reacts to o A

temperature changes in comparison to an initially flat substrate. c*=v121-v9) (30)
The dimensions of the shell are defined in Fig. 1. The solution tnhd whereE and v represent Young’s modulus and Poisson’s ratio

the problem of order zero is given by E). The objective is of the bare substrate. Due to the radial symmetry, the Laplace
therefore to find a solution to the first-order problem defined kyperator reduces to
Egs.(10—(15).

2
The initial curvature of a spherical cap can be expressed as Vz_d_+ 1 i (31)
T dr? rdr
Z
Tcaﬁ:waﬁzza—g Oap (24) and radial moments and membrane forces per unit length become
, , ) Eh®/d2w®  1dwf 1 do°
whered,; is the Kronecker delta. The previously introduced ten- M{=— s +v T ) f=F ar (32)

sor ,35;; is chosen according to one of the two limiting cases
discussed in Section 2.2. The prescribed coefficient of thermallt can be shown that with radial symmetry and zero external
expansion for the two alternatives can be worked out as loads, the following conditions are automatically satisfied:
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dVVC _ C _ C — C —
WO—Qr(a)—N,‘P(a)—M,‘P(a)—O. (33)
It should be noted that in contradiction to Leissa et[4],
Reissnel(6] includes a termaxNf(a) in Qf(a), this term does
not matter here becaus¢(a) =0. Following the work of Reiss-
ner [6—8] the total solution to Eq928)—(29) subject to the con-

tinuity requirement and displacement condition at the center may

be expressed as
wo=3a’TBL, f(N), ®°=3ERQ’TA SN (34)

wherer=r/a. The dimensionless functiori§r) ands(r) may be
expressed in terms of the Kelvin functions e and bei(x) as

(1) =Cy(bep({r)— 1)+ C, beip({1) + 372

(35)
s(r)= é(cl bejp({1) —C; bep({T))
where the dimensionless paramefds defined as
a’% Zy
{=cC \/;= c \/2(?) (36)

Applying the boundary conditions given by E@9), the con-
stantsC, andC, can be determined as

V2(1+v) .
1—T{beﬁ(§)+be|1(§)}

—v2(1+v) )
CZZT{beﬁ(é)—beh(é)}

N=2(1—v){bek({)+bef({)} +v2{{ben({)(ben (L) —bey(£))

+bep()(ben () +bei(£))}.
Thusf(r), s(r) depend only oir, zy/h and . In order to com-

37)

pute curvatures and forces per unit length, the following dimen-

sionless functions are introduced:

_ 1df  v2¢

hlm__r_dr_: 2
+(Cy+Cy)bei(Lr)i—1

C,—Cp)ben({r)

_ d?f
2N == G =S —hy (1) -2
(38)
_ 1ds 1v2¢
hsm:F—_r:_ gir—{(cl"‘cz)beﬁ(ﬁj

—(Cy—Cy)bei(Zr)}
2 2

_ d<¢s _
h,(r)= i %{Cl ber (L) + C, bep(LT)}—hs(T).

For zero initial curvature, all functions in E¢38) vanish and
for large initial curvaturesh;(r) and h,(r) tends to—1 while
hs(r) andh,(r) again tends to zero for€r<1. The curvatures

0.6 %o
h
05 100
0.4+ 3.00
_ 2.00
J 03
N
g

11.00
10.75
0.50
0.00

-0.1

0 01 02 03 04 05 06 07 08 09 1
r/a

Fig. 2 The dimensionless displacement correction f

=2w%(a? T,B}m) as a function of dimensionless radius rl/a for
zo/h=0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 100 and »=0.262

a’tt — 5
W= — T{ﬁaﬂxaxﬁ_ﬁaa fm}+o(5 )
(40)
Eh%a’T
&= TBMWJFOWZ)

whereT?=x;+X5. In Cartesian coordinates the total curvatures
become

K11 2ﬁ11+ﬁaa{7lEm+Y§Em}/rﬁ
K22 | =5 T| 2B22t+ BualX5h2(1) +X3Ny(NIT? | +0(6%)
2K12 4B15+ 2BaXXa{ No(F) — Ny (M)} /72

(41)
whereas the total normal forces per unit length read

Nll 1 XﬁlE;m +Xﬂ25m
Npo| = EEhZTIBaaﬁ X5ha() +X5hy(r) | +0(8%).
Ni2 X1%o{ ha(1) — (M)}

(42)

The total moment per unit length can be computed with the
isotropic form of Eqs(10), (12), and (41) whereas the total in-
plane strain up to order one can be computed by using ®Q5s.

(12), and(42). For the in-plane strains, however, the term of order
zero does not vanish as it does for the other quantities and it can
be considered much larger than the terms of order one. The total
middle surface strain can therefore approximately be written as
g.5=Tad,p+0O(5) wherea is the coefficient of thermal expan-
sion of the substrate.

The effect of initial curvature and position on the dimensionless
displacement correction is presented in Fig. 2. For lagdé, the
total solution given by Eq(40) thus implies that, for an isotropic
film, the initial out-of-plane shape of the shell will remain un-
changed. Figures 3 and 4 show the effect of initial curvature on
the radial f,(r)) and circumferentiallf;(r)) dimensionless flat-
plate curvature correction. It is seen that for very small initial

and normal forces that solves the correction problem can then @&vatures, all corrections vanish as anticipated. Equaditnand

expressed as

fo |y Ez(rj NeL oy 53“5
Ko |=5TBhal (M) |, | No |=5ENTBL,| hy() |-
tl 2 Sl 2
2Ky, 0 Ny, 0
(39)

Figs. 3—4 show further that the correctidmgr) andh,(r) are of
significance when the initial out-of-plane distanggh is of the
order of one half or larger. For largg /h a boundary layer with
dimensionless length of ord€(\/h7z,) develops, see the Appen-
dix.

2.4 Extraction of Average Layer Stresses From Curvature
Measurements The theory presented in Sections 2.1-2.3 de-

The total solution to the zeroth and first-order problem can nofines implicit relationships between curvature changeg;) and
be assembled. The total deflection and stress function can be #ermal curvature coefficieni8,; which through Eq(9) are di-

pressed in Cartesian coordinates as

Journal of Applied Mechanics

rectly connected to average layer streséegg). Here, explicit
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Fig. 3 The dimensionless radial curvature correction h, Fig.5 The function g(#,zo/h,v) (cf. Egs. (46), (47)). The pa-

=2k%/(TBL,) as a function of dimensionless radius rla for rameter zglh den(_)tes the initial curvature and 7n=0.00, 0.50,

2,/h=0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 100 and »=0.262 0.85, 1.0Q is the ratio be_twe_en the scanning Iength and thc_e sub-
strate radius. An isotropic Si substrate with a Poisson’s ratio of
0.262 and a spherical initial curvature is considered.

0.2 . . T T T T T " " 2y
"
0 0.00

1 (7
||ea(7a)\|:57f €.(X2)?dX, (no sum overa) (44)

-n
where n=s/a. The fitted curvature can then be expressed as

s 31 7 dwix)
“dx,

-9 a

Ka_iiaz_ﬂ?’ dY

. (no sum overa).

(45)

Replacing the measured slopes with the theoretically obtained
ones and solving the linear system gives
S I I
0 01 02 03 04 o/.s 06 07 0.8 09 1 ot 1 (KIiS+KI2_S)+(KIiS_KI§S)
r/a = =
1 g9(n,20/0,v) 2 2

Fig. 4 The dimensionless tangential curvature correction — h1 \yherep,, is obtained by interchanging the subscripts 1 and 2. The
=2k,/(TPB,,) as a function of dimensionless radius rla for functiong(%,z,/h, v) becomes

z,/h=0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 100 and »=0.262

(46)

. 3 (7 _
g(ﬂ,Zo/h,V)=?Jo E(1+hy(§))d¢ (47)

results will be presented for an isotropic substrate with spherical | . )

initial curvature (cf. Eq. (41)). It is assumed that the principal Which can be evaluated numerically. Equatiei) can now be
directions ofB,,; coincide with the 1,2-directions, thys;,=0. used in conjunction with E¢(47) to determine the coefficients of
The curvature measurement technique relies on evenly spaé@@fmal curvature and thus to obtain average stresses in the thin
measurements of the slope of the substrate along some radﬂ)_’@r- Very often, the curvature is only measurgd in one dlrec_:tlon,
before and after a temperature change has been applied. i then commonly assumed that the layer is macroscopically
slopes are then subtracted pointwigieerefore the effect of any 1SOtropic. The second term in Ed46) will then vanish and
initial curvature vanishesand a straight line is fitted by the leastd(7:20/h,») may be interpreted as the ratio between a measured
squares method. The slope of the fitted line with respect to thrvature and the corresponding flat plate curvature. It is empha-
radius is then proportional to the curvature change of the sufjze€d that the analysis is valid for elastic as well as inelastic lay-
strate. As long as the substrate is initially flat, the curvature wifirS- Figure 5 shows the functi@(7,z,/h, ») versus initial out-
theoretically be constant over the radius. However, if the substr&tPlane deflectiorz, /h for different normalized scanning lengths

is initially curved, the curvature obtained by this method is avef# It iS observed that whem,/h~0.5, the measured curvatures
aged in a sense and it will not coincide with the flat plate curv&leviate markedly from what is expected for an initially flat sub-
ture TB,5. It is therefore of interest to find a way to extractStrate. It is also seen that the curvature near the center of the
accurate volume-averaged stresses from curvature measuremgifgstrate changes sign whep/h~2. For situations when the

on initially curved substrates. Suppose that the slopegdx,) Initial curvature is large, the isotropic out-of-plane shape of the
along the two radial linex, are measured on evenly space§hell remain unchanged, therefore curvature measurements can in

points between—s<x,<s where s<a. The pointwise error this case not be used to extract volume averaged stresses.
" .
along the principal directions can then be expressed as

1 dw(x,) 3 Conclusions
_ R . -
eu(Xa)= 3~ Bat arX, (no sum overa) The present analysis of initially curved substrates has revealed

“ (43) avery useful first-order approximation. It has been shown that a

homogeneous shallow substrate with a thin, generally inelastic

where «5° represents the unknown averaged principal curvaturgnisotropic layer, may be modeled as a bare shallow substrate
The continuous form of the least squares problem is to minimixgithout layer and the effect of the layer is adequately described by
the following mean square errors with respecBtpand KI;S: the substrate/layer system’s coefficients of thermal curvature. It
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has further been shown that for certain combinations of initi¢#¢m are transferred to the boundary conditions. Asymptotically, a
curvatures and coefficients of thermal curvature, the solution stress-function defined according to Eg7) as well as the dis-
the general anisotropic shallow shell problem degenerates into filacements will vary much faster in tig-direction as compared
well-known flat-plate solution. For situations when the initial curto the tangential directionég), therefore the stress function and
vature is large, a boundary layer develops near the free edge of digplacements will asymptotically only be functions&fand the
substrate. In this case, the solution that is valid in the interior &llowing problem results:

the shell as well as the boundary layer solution is presented in ~

closed form for a general anisot)r/opiz substrate of Fa)lrbitrary in- hCppy W + 120" =0 Spopfb™ —hikp " =0

plane shape. h3 . h3

For the particular case of an isotropic substrate with spherical - l—zclmw”(O): MnETl—sz,;(Ba/;T—BEB) (A1)
initial curvature and a general thin layer deposit, a correction to
the flat substrate solution that is valid for any constant initial W”(0)=w() =W’ () =Nyy)=0

curvature is presented in closed form. This correction exhibits ) .
radial symmetry. The analytic correction enables investigations Where all tensorial quantities have been transformed to the éocal
the effects of various parameters, such as the initial curvature df@me andN;(0)=N;,(0)=0 are automatically fulfilled. The
Poisson’s ratio of the substrate. The initial out-of-plane deflectigipmpliance tensofinverse ofC,, ) is denotedS,;,5. The so-
7, is observed to change the flat-plate solution significantlif !Ution to this boundary layer problem may be written as

~h/2 whereh is the thickness of the substrate. The resulting

curvaturegwhich now vary with positioncannot be used directly W= — %e—m(cog)\&) —sin(\ ;)

to interpret curvature measurements on shallow substrates in h°Cipah (A2)
terms of volume-averaged stresses in the layer. However, this can i

be achieved by simulating curvature measurements on initially _ M1 g i

curved substrates. These simulations make it possible to solve the @ Koo € (COgAEy) —Sin(AEy)

inverse problem and hence to accurately use measured curvatures  , __>, ., .
for the determination of average layer stresses. Where x =322 (N"C111:55229) . It can be shown that for situa-

tions when the local curvatuf,, tend to zeroM; also tends to
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A Strain-Based Formulation for
« mser-Tawan | the Goupled Viscoelastic/Damage

Sroessers  § - Bahavior

A strain-based thermodynamics framework is proposed for modeling the continuum dam-

Y. J. Weitsman age behavior of viscoelastic materials. Damage is represented by an internal state vari-
Department of Mechanical and Aerospace able in the form of a symmetric second rank tensor. The effect of damage on the consti-
Engineering and Engineering Science, tutive behavior is introduced through direct coupling between the damage variable and
The University of Tennessee, the viscoelastic internal state variables. This approach accounts for time-dependent dam-
Knoxville, TN 37966 age as well as damage-induced changes in material symmetry. Also, damage evolution is
Fellow ASME modeled by employing the concept of damage surfaces. This work is motivated by experi-

mental observations of the response of swirl-mat and random chopped fiber mat poly-
meric composites where viscoelastic creep was accompanied by a multitude of fiber/
matrix interfacial cracks. [DOI: 10.1115/1.134801]3

1 Introduction strain and damage evolve with time, under an applied strain the
stress relaxes with time and it may then be possible to identify
states of stationary damage that are necessary to specify the dam-
age surface. This supposition provided a motivation for the
sent strain-based formulation of viscoelasticity coupled with

The growing interest in the use of polymeric materiedsg.,
plastics and polymeric composije$or structural applications
mandates appropriate knowledge of the mechanical behavior

well as the durability of these materials. It is well known thagamage. An additional advantage is due to the fact that strain-
polymeric materials creep viscoelastically. In addition, experj

mental investigationse.g.. [1—4]) indicate that polymeric com- _ased viscoelastic constitutive models are more convenient for

posites may undergo distributed damage in the form of a mul mplementation into finite element codes than stress-based ones
tude of microcracks. The objective of this article is to establish%_"g" [13]). The present formulation employs concepts of con-

NI . . uum damage mechanics as well as several existing concepts of
framework for the constitutive modeling of the foregoing featur e thermodynamic theory of viscoelastic materigist,15)). This
of material behavior. Such a framework is essential for a reliat?% A

. ing desi rmat accounts for time-dependent damage as well as damage-
engineering design. . induced changes in material symmetry.
Up to the present time, most of the efforts for modeling distrib- |, saction 2 of this article, we present a general thermodynam-

uted damage have been directed toward brittle materials exhiils famework that accounts for both viscoelastic and damage pro-
ing elastic behavior and metals exhibiting plastic or creep r

) . °P "Besses. We proceed by modeling the coupling between these two
sponse(e.g.,[5]). Less attention has been paid to the modeling Qf;ocesses in Section 3. In Section 4, damage evolution is modeled
damage in viscoelastic materials. Notably, Schapéry8] estab- 4,gh the concept of damage surfaces and is illustrated by a
lished a basic formulation for viscoelastic response that is acco®nple example in Section 5. Section 6 concludes with a summary

panied by microstructural changes, such as profuse microcragkiy some remarks pertinent to the present work.

ing. The microstructural changes are represented in Schapery’s

work by means of a set of internal state variables whose evolu-

tionary laws are motivated by considerations of viscoelastic frag- Thermodynamics Framework

ture mechanics. It may also be mentioned that Weits@drat- . . .

tempted to model the coupling between viscoelasticity and COnsider a polymeric material and lgt (r=1.2, ... R) de-

damage for a special class of linear viscoelastic materials. noteR scalar-valued internal state varlables_repr_esentmg the inter-

In a recent article by the present auth¢[s0]) a stress-based nal degrees-of-freedom of molecular motion in the polymeric

o Bhalns. The internal state variable representing damage can be

n{&{ated in terms of tensorial quantities of even ranks, which can be

polymeric composite. The effect of damage on material behavi@.?solc.iated %’Vitg the spatial dli?tri_butik?ns of microcra({@)._For d
was introduced through the concept of effective stress. Also, dammE |tC|ty, the arqﬁgg_ variat ells chosen as atsymrrr?'etr(ljc secon
age evolution was related by the empirical Kachanov-Rabotn&yX €NSOrw;; with Gimensioniess components. This damage

forms ([5]), which are best suited for monotonic creep Ioadingé’.ariable is ce_lp_a_ble of simulating _chang(_as in me_lterial symmetry
) &Hch that an initially damage-free isotropic materlallmay become,
faces([11]) offers a more versatile approach to damage evolutioft MOSt, orthotropic upon damage formatiga6,17)". Despite

It is well known that damage surfaces are better expressedUilg Shortcomings of the aforementioned damage varigh8), it

strain space than in stress spa&12)). This seems particularly was adopted by several workers in the field of damage mechanics

appropriate for viscoelastic response where creep occurs at (g'g.,[lG,lg,ZQ) due to its relative simplicity and applicability to

stress levels. More specifically, while under an applied stress bdlctical circumstances. It should be mentioned that the present
ormulation can be readily modified to accommodate damage

Contributed by the Applied Mechanics Division ofiE AMERICAN SOCIETY OF variables of other tensorial ranks. Throughout this article the sub-
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED fscr'ptsr andq are reserved for S_Calar quam't'eS; aenda, c.di
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Octj, K, I, m, andn are associated with tensorial quantities and cover
27, 1999; final revision, Mar. 24, 2000. Associate Editor: J. W. Ju. Discussion on ttlee range 1,2,3. Also, the summation convention is implied over

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departmeqﬂfé range of repeated indices unless stated otherwise
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi 9 P '

be accepted until four months after final publication of the paper itself in the ASME—

JOURNAL OF APPLIED MECHANICS. 1Also, an initially orthotropic symmetry may evolve into another orthotropy.

distributed damage was developed and applied to a swirl-
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Viscoelasticity and damage are irreversible thermodynamic Y=y €ij s 0ap).- (10)

processes. For a closed system and small strains, the entropy q_ro- o .
duction inequality can be written in the for(f21]) hese equilibrium values are assumed to be continuous and suf-

T ficiently differentiable functions of their arguments. Assuming
- -Eij S LN 1) that all y, an(iyr are sufficiently small, a Taylor series expansion
T for ¢ abouty; takes the form

where ¢ is the Helmholtz free energyper unit volume, 1

oj;—components of a suitably defined volume-averaged stress ten- U=t 7 rg(vi— YO( Yq— yg) +H.O.T,, (11)
sor, €;—components of the infinitesimal strain tensSxentropy

(per unit volume, T—temperatureh;—components of the heat flux where

vector, T ;= dT/dx;—components of the temperature gradient, and

x;—space coordinates. Also, {f) an overdot signifies differentia- o= el €ij , wap)
tion with respect to time. is the value ofis at equilibrium,
Consider a Helmholtz free energy of the form 24
= l/’(fij Ve @aps T). 2 qu:(a’)’rﬂ'yq)e

The functiony is assumed to be continuous and sufficiently dif- . . .
ferentiable with respect to its arguments. Considerations of tfe® Symmetric matrix considered to be constant, and H'?'T' refers
entropy production inequality if1) together with the functional to higher order terms neglected due to smallnesg aindy; . In

dependence i2) give the following familiar relations: the above relations, and in the sequel, the subscréjtithplies
that a quantity is calculated gt = y¢ Vr. Note that at equilibrium
S (3 #is minimum([22,23) and hence
1 1
] (96” ( 5¢) .
o =] o,
—__" Y
s=-., 4) e
and
and
hT.. #rq87: 674> 0.
Ly + Qapan— %20, (5) Consequently, there is no linear term(iil) and ¢, is a positive

definite matrix. It should be mentioned that an expansion similar

wherel', and{),;, are the thermodynamic forces conjugate to thto that in(11) was previously used by Lublinge4]. _
internal state variableg, andw,,, respectively, and are given by Employing the usual assumption of viscous-like resistance

14,15), let
» ([14,19) |
=T g (6) I =aqYq. (12)
and where, according to Onsager’s princigle2,25) a4 is a sym-
metric matrix. Substitution of12) into inequality(8) gives
Ay o
Qap=— Fr (7) arqYr¥q=0.

) o ) Hence, the matrixa,, is positive semi-definite. Note that in the
Finally, from the dissipation inequalit) we have the follow- general case,, is a function of temperature, but since we are

ing requirements: considering only isothermal conditions thep, is constant.
T, %,=0, ®) Equations(6), (11), and(12) yield
Ty + Qapwap=0. 9) ArqYqt Yrq¥e= g 73 . (13)

Inequality(8) must be satisfied whenever viscoelastic deformationC€ arq IS @ constant symmetric positive semi-definite matrix
occurs, while when deformation is accompanied by damage @P2d ¥iq is @ constant symmetric positive definite matrix, it is

equality (9) should be satisfied as well. possible to rewritg13) in a diagonalized forni[26]) as
Ar-3/,+\lfr§/r=\1'r3/f (no sum overr), (14)
3 Constitutive Modeling where y, are transformed internal state variables, each being a

) ) ) . linear combination of the original internal state variabjgs The
sdll _G?nerall f‘gr?u"?}[tr'lon- In t?'ls_ section a Icotr_wt'tt)mr'lve_parametersf/re are the equilibrium values correspondingjtoand
model is formulated for the case of linear viscoelastic behavi ; : :
e obtained fron’yg by the same linear transformation as that for

coupled with damage. For simplicity, attention is restricted to the -
case of isothermal behavior. The extension to the general caseyblf_. AIS.O’ Ar anqq}f are constants such t_hAt/O and_\lf,>0.
or fixed strain and damage, the solution of ELj) is

nonisothermal conditions can be made following the same ap-
proach adopted here. The underlying hypothesis in the present Y=%(1—e V") (no sum overr), (15)
formulation is thaty, andw,, are associated with disparate length L .
scales; molecular foy, and, say, fiber/matrix interfacial cracks in'Where 7, are relaxation times given by
a fibrous polymeric composite fav,,. The formulation will be A,
first established for fixed straig; and damagev,, and subse- =g (no sum overr). (16)
quently extended to fluctuating; and wy, . r

For fixedej; andw,y, an irreversible thermodynamic process isn terms of the transformed internal state variables, expariihn
triggered in the material, which prompts the viscoelastic internghn be rewritten as
state variableg, to drift spontaneously toward their equilibrium
valuesyy . Under isothermal conditions, ajf are independent of Y=ot 12 V(% —5)%+H.O.T. (17)
temperature, hence 24
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The viscoelastic strain can now be obtaingd by substitutirmy 1( %y
into (3) bearing in mind thaty,, and hencey,, are to be kept «pe:z(m) €ij €k - (25)
fixed during the partial differentiation indicated (). Employing ERLEA
(15) we then obtain Following common practice in continuum damage mechanics
o IA (e.g.,[17,27)), we further assume that, depends on damage in
o= —LeUm, (18) the separable form
] (96”' T (96” 1
where ¢e=§ QijabCabedcdki€ij €xi » (26)

where Qjj = Qijji(wap) iS @ double symmetric, fourth rank
tensor-valued function ab,j, such thaQj =ljj atw,,=0, and
consequentlﬁ:ﬁ-k' is the undamaged long-terrubbery stiffness

1.
A=A (€ ,wab)zz‘lfr(yf)z (no sum overr). (19)

The first term on the right-hand side @8) represents the long- L . - . :
term (rubbery part of tlge behavior, aﬁld )thepsecond term re%r(%gnsor which is typically positive definit¢25]). Using (26), the
sents the transieritime-dependentpart. ong-term part of(18) takes the form

Motivated by previous works on linear elasticity with damage e
(e.g.,[17,27)), we now recast the formulation in a format that g=QijabC§bchcdk|€k|- 27
retains a linear viscoelastic relaxation modulus and introduces the 1
effects of damage by mapping the stress and strain into “damageRelations(23) and (27) indicate that the long-term part of the
effective” stress and strain, respectively. To this end, considbehavior can in general depend on damage in a manner that dif-
first the transient part i18). ExpandingA, in terms of strain fers from that of the transient part. However, for simplicity, we
around the reference stagj?f:O, up to quadratic terms to retainassume here that both parts have the same dependence on damage

linearity one obtains so that

1( A, Qijk = Pijii - (28)

Ar=51s———] €jen, (20) : . o ) )

2\ dejjdeq) Assuming that the inverse;; exists, define the following “dam-
where the subscript 0 implies that a quantity is calculated at tﬁge effective” stress and strain tensors
reference state. Note that the constant terrt20) vanishes since ?,—ij = Pk]ljffm (29)
(v9)0=0, and hencéF=A,=0 at the reference state. In addition, -~
the linear term in(20) is discarded since it corresponds to a re- €j=Pijii € » (30)

sidual stress at the reference state, which is disregarded in then relation(18) can be rewritten in the compact form
present formulation. ~ ~

A more specific functional form for\, can be obtained by i = Cijia (1) €1, 31)
realizing that the internal molecular motions representedypy \where
occur on a much smaller dimensional scale than that of damage

represented byv,,. This suggests that al}¢, and hence alf? Ciji (1) = Cjig + ACjja (1), (32)

andA,, are likely to be affected by damage in a common mannegg the overall(long-term and transienstifiness tensor of the un-
i.e., they have common dependence @y),. Consequently, we gamaged material. Relatioi29) and(30) are consistent with the

can rewrite(20) in the form formulations of the concepts of effective stress and effective strain
1 (e.g.,[16,28), where the mapping tensor for the effective stress is
A':E PijabAChpcPeai€ij€n VI (21) taken to be the inverse of that of the effective strain. Also, note

that both's;; and’e; are symmetric due to the hypothesized

In (21), ACjj, is a double symmetric fourth rank tenstre., double-symmetry oPjjy . _ _
ACl =ACL =ACL, =ACL ), and Py =Pii(w.e) is a Relation(31) suggests that for a given damagg lewgl,, in-
dou”tlflle symjrllﬁletric flé)llkjrth raﬂkj tensor-valllued fanction of the da stantaneous mapping of the actual stegsand straine accord-
age variablay Sl,JCh that rihg to (29_) _and(30), respectively, lead to new stresg and strain

ab €j quantities that are related by the usual linear viscoelastic con-
at wap=0—Pjj =l » (22) stitutive relat_ion for fi>_<ed strairﬁe.g.,_[2§]). Upon hyp_otrlesizing
time-translation invariance, and sinag; is linear in ¢, a
straightforward application of the superposition princif29]) to
expression(31) yields

where

1
IijkI:§(5ik5jl+5iI5jk): ~ t dey
. ) . oij=| Ciu(t—7)——dr. (33)
is the unit fourth-rank tensor and); is Kronecker delta. 0~ dr

Using (21), the transient part of18) takes the form Allowing for spatial variations of stress and damage the total de-

IA rivative d/dr inside the integral is replaced by a partial derivative
2 Fre’t”: PijabA Capcd t) Peki€i » (23) dlor, holding the spatial coordinates fixed. Thus
r ij ~
_ t (9€k|
where gij = Cijkl(t_T)TdT- (34)

0 T

AGj(t)= > AC] eV, (24) Equation (34) is the stress-strain constitutive relation for the
r

coupled linear viscoelastic/damage behavior, and can be ex-

From (18), (22, and(23) it is clear thatAC,y,, is the undamaged pressed in terms of the actual stress and strain as

transient(time-dependentstiffness tensor. t I Peaxi€xl)

Consider now the long-term part dfl8). The equilibrium O'ij=Pijabf Capedt—7) ———dr. (35)
Helmholtz free energyy, can be expanded around the reference o T
state in the form It should be noted that at=0
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3.4 The Mapping Tensor. The functional form of the map-
Cijk|(0)=Cﬁk|=Cﬁk|+2 ACijy (36) ping tensorPy is restricted by the requirement th&,, is
' double symmetric in addition to the requirement$28) and(44).
whereC?,, is the initial (elastig stiffness tensor which is positive " 9€neral,Pyj is an anisotropic fourth-rank tensor function of
definite(t25]) w,p. However, due to the complexity of anisotropic functional
' forms ([30]) and the fact that damage-induced anisotrdpy,
3.2 The Isotropic Case. Consider now the special case ofmore precisely, orthotropycan be deduced from a symmetric
isotropic virgin material response, which applies to the class sécond-rank damage tensor, then the more complex anisotropic
randomly reinforced materials of current interest. The overdilinctional form may be avoided.

stiffness tensoC;jy, takes the form([25]) Following Murakami and Imaizundil9], a simpler representa-
2 tion of Py;; can be obtained by taking it as an isotropic fourth-

Co (D) =2G(D] v+ KD — =G(H) | 8. 8 37 rank tensor functlo_n ofuab: A further S|r_an|f_|cat|on of the rep-
ik () (Dlija (=3 6( )} 1y Okl 37 resentation ofP;;, is obtained by considering a case of dilute

concentration of microcracks in whidRyj,, is linear in w,,. In

whereG(t) is the overall shear modulus ak{(t) is the overall this caseP,,, can be written ag19))

bulk modulus given, respectively, by
Pijki = C10ij Skt Co( 8i 91 + i 9jk) + C38ij iy F C4 O i

G(t)=G,+AG(t), (38)
and +C5(6ikwj|+5i|a)jk+ 5jkwi|+5j|wik)+H.O.T., (47)
wherec, (e=1,2,...,5 are constants.
K =Ko+ AK(D). (39) From(47), it is clear that double symmetry &%, dictates that

In the above expressior®, andK, are the instantaneous sheafs=Cs- AlS0, the requirement i22) rendersc;=0 and c,
and bulk moduli, respectively; ankiG(t) andAK(t) are the tran- = 1/2. To determin@;=c, andcs, we consider the special case

sient shear and bulk moduli, respectively, obtained f(@) as of isotropic damage in which_ th_e ensuin_g dama_ge pattern does r_10t
affect the symmetry of the virgin material. In this case damage is

represented by a single scalarso that

AG(t)= D, AGe !, (40)
r Wap=w0,; O=w<1, (48)
and and the mapping tens®;,, takes the forn{[28])
Pi=(1—)li, 49
AK(D)= AK,e V7, (a1) ik = (1= @)lij (49)
r

which is the inverse of the corresponding mapping tensor that
maps the applied stress into the Kachanov effective stress in the
case of scalar damage.g.,[11]). The functional form in49) can

3.3 The Dissipation Inequality. The thermodynamic force be recovered fron(47) by settingc;=c,=0 and takingcs=
Q,, conjugate taw,;, can be obtained by substituting7) into (7) — 1/4. Thus, the simplest possible form Bfj, becomes
using(21), (26), and(28)

whereAG, andAK, are positive constants.

1
A P Pijii =lijk = 7 (Fikwji + Sy wj+ Sjwi + Sy wi).  (50)
Qap=—PijcaCcdmr

Ty K (42)

It is interesting to note tha%’i}kl, obtained from(50) indeed coin-
cides with one of the forms proposed by Chen and CH20y for
the tensor that maps the applied stress into an effective stress.

R Y . The complete formulation of the constitutive model requires an
Cijki=Ciji — PR AGCjjy - (43)  expression for the evolution of the damage tensgg such that

roA (44) is satisfied. Such an expression can be formally derived from

Since thermodynamic consideratioris.g.,[17,27), but the usefulness
of such approach seems to be restricted to elastic or elastoplastic
response with damadg31]). In practice, the form of the damage
evolution equation depends on the material considered and the
. applied loading. This dependence is better correlated within the
then Cj, is bounded byCf,, and Cfj corresponding, respec- concept of damage surfacé$]) as discussed in the following
tively, to the upper and lower limits of, /7. SinceCf,, and section.

Ci"jk, are positive definite then it follows th&; is also positive

Whereéijk, is given by

Os(Y—;)sl; vr,

r

4 Damage Evolution

definite.
Employing (6) and (7), the dissipation inequality9) can be The approach adopted here for describing damage evolution
expressed as follows closely that presented by Simo and[28] and Lubarda
and Krajcinovic[32]. This approach has two main ingredients.
22_p. . C : e = First, a damage surface is introduced in strain space to distinguish
Z A~ PrjanCavcdP caiaciy €= 0, (44) " Detween the material states associated with evolving damage and
those with stationary damage. Second, a damage potential is as-
where sumed to exist, from which the constitutive law of damage growth
P ca (i.e., the damage rate,,,) can be derived. _ _
Pegui= Omn- (45) To characterize damage evolution, i.@amage loadingondi-
domn tions, a damage functiof(e;; , ) is introduced so that
Noting that the first term on the left-hand side (@#) is always f(e,k)<0 (51)
non-negative, then a sufficient but not necessary condition to sat- ) - I ' )
isfy (44) is where k is a positive scalar damage threshold history parameter
N . and at the initial onset of damage= x,. The equality in(51),
—PijanCabcdPcaki— positive semi-definite. (46) i.e., f=0, corresponds to strain states that lie on the damage sur-
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face and for which damage can evolve. For simplicity, the fun& [llustrative Example for the Damage Functions: Iso-
tion f is chosen in the simple isotropic hardening form tropic Symmetry

(&, k) =Fej) =k, (52) Two scalar functions/(e;;) andG({,p,) are needed if60) to
where F is a scalar function of the strain. qbtain an explici.t damage evolutipn rglation. The simplest pos-
Introduce a monotonic scalar functig®((2,,) such that the s[ble representation of these functions is to take each as an isotro-
damage rate can be expressed as pic function of its tensor argument. Thus

. 9G F=F(1.15.19), (62)
ioa=A 50y~ 53)  and
where\ is a monotonically increasing positive scalar, i.e., G=G(1 1315, (63)
A=0. (54) wherelf, 15, and1§ are the isotropic invariants of the corre-

. . ndin nd-rank symmetric tengy. Th isotropic in-
Physically,\ represents a measure of the cumulative damages tﬁag![sgc;sct?e evri?ten “2’@30])& Ic tenshy ese Isotropic |
the considered instant of the deformation process. The fungtion

is referred to as the “damage potential.” 12= Bk,

Following Simo and Ji28] let
- 15=\B/ B,

A=k, (55) q
an
and definedamage loading/unloadingonditions according to re-
lations (51) and (54) together with 15=de{B;]1,
=0, (56) where,Bi’j is the deviatoric part of;;

Thus, if f<0 thenA=0 and from(53) no damage evolution takes ' E S
place, i.e., the so-calledamage unloadingrom the current state Bii=Bii ~ 3 Pucdiy -
of strain on the damage surface takes placé=0 and\=0 then
damage neutral loadingccurs. Finally, ifA#0 thenf=0 and
damage loadingakes place.

During damage loadingthe consistency condition

To simplify matters, discard the dependenceFadn | 5—this is
a customary constitutive assumption in damage mod€(fiBg).
Further,F is expressed in the following simple for(f32]):

F=Feljei+Foeg (64)

f=0, 57
o 7 whereF,; andF, are constants.

must always be satisfied. Frof&2) and(57) we have Considering the case of isotropic damaBgy, can be taken in

OF the form (49) and (60) should reduce to the simple form

= ‘9_511 i (58) ‘bab: i"‘sab . (65)
Assuming that no damage healing occurs, i.e., the damage surfdellows thatG can depend only o@ , i.e., on the trace o),
can only expand, ther is obtained from(52) and (55) as so that
k=maxX Ko, Fmaxs (59) G 5

where Fpa is the maximum value ofF over the entire loading PTG

history. Substitution 0f58) and (55) into (53) yields Consider the case of a dilute concentration of microcracks
G IF . where the interaction between microcracks as well as the effect of
Wap= 25— o €ij - (60) accumulated microcracks on further microcrack formation can be
Hlap Iej) neglected. In this case, the rate of damage evoluiiomay be
Thus, specification of the functional forms #fandG completes taken to be independent of the accumulated damagBepen-
the formulation for the damage evolution. In practice, these fundence ofw on w, however, is implicit in... Thus, to eliminate
tional forms depend on the material considered and the ensufiigpendence ab on o the functiong is taken to be linear i),
damage pattern. Example functional forms will be presented in the _
following section. G=G0cc, (66)
g
In the damage evolution E¢60) the thermodynamic forc8,, whereG is a constant. Expressidi66) can be thought of as the
is given by expressiofd2) in which Cyj is given by(43). Thus first term in a Taylo_r series expansion @f(the constant term in
an explicit expression fof),, requires evaluation of the ratio Such expansion is immaterial to the present formulatidmus
Y. 15¢. This ratio can be determined from the differential equa@ddition of higher order terms in the expansion introduces depen-

tion dence ofw on w.
A ) Underdamage loadingonditions@>0 and the left-hand side
d /|y 1 1 dA\ ¥ 1 of the dissipation inequality44) becomes
—|=s|t|—=*+5——]||=s/=— (no sum overr),
dtl y; T 2A, dt )|y Ty Y .
(61) 2 Aryr+(1- 0)wCijy €€
r

whereA, is given by(21). Equation(61) is obtained after simple .

algebraic manipulations of Eq14) and making use of16) and which is always positive sinc€;jy, is positive definite. Thus the

(29). requirement of positive dissipation is identically satisfied. Substi-
It should be noted thaf) .4 depends onw,;,, explicitly through tution of (64) and (66) into (60) and use of(65) yield damage

Pmni @and also implicitly through the ratig, /2. Thus, in prac- evolution in the form

tice, Eqs.(34), (60), and(61) need be implemented incrementally Sy .

where for given strain and time increments an iterative procedure = a6 € Beeu (67)

is required for determining the corresponding damage incrementhere
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a=2F,G and B=2F.,G domly reinforced composites. Though all data were collected un-

der stress control, and was further limited to uniaxial loading, it

are free parameters that need to be determined from the damgge eyertheless possible to discern behavior that confirms sev-
evolution pattern in a considered problem. The first term on the,| of the basic premises of the current strain-based model.

right-hand side of67) represents the effect of the deviatoric part For instance, it was noticef4]) that viscoelastic creep can

of the behavior on damage evolution, whereas the second t&ffyceeq at fixed levels of damage for an extended time duration.

represents the effect of the hydrostatic part. Namely, the imposition of a step stress, of magnitude that exceeds

. . . some threshold level, reduces the instantaneous stiffness of the

6 Experimental Evidence and Its Interpretation aforementioned composites, but that stiffness does not degrade
As noted earlier, the formulation presented in this paper is many further for substantially long time spans despite the ongoing

tivated by the experimentally recorded response of a class rameep process. This decoupling between damage growth and creep
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Fig. 1 Strain versus time for a multigaged random chopped-glass mat /urethane composite
coupon. Failure occurred at time  t=155 min.
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Fig. 2 Expanded exposition of the strain recorded by strain gage #4, detailing the
experimental value and the prediction of power-law creep form
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was observed to persist for relatively long times even at elevatedse ofP;;,, and the conjugate thermodynamic foQg, 4 in the
temperature§ 33]). However, the contribution of damage growthcase ofG). For fourth-rank tensors, the definite forms of the in-
to total deformation under sustained loads became evident fegrity bases and invariants are not yet well establighed]).
durations that exceeded 75 percent to 95 percent of failure time. InAn important remark is that in the present formulation the ther-
most case ultimate failuré'static fatigue”) was centered about modynamic force conjugate to damage depends on the viscoelas-
the softest location within test samplg84]). tic internal state variables as can be seen from relatié®sand
Evidence for the above-mentioned creep, damage, and fail@48). This differs from previous formulations by Schapery
processes is provided by the typical data shown in Figs. 1 And [5,8,35, where the thermodynamic force conjugate to damage is
Figure 1 exhibits typical creep data, recorded in a multigagedken to be independent of the viscoelastic internal state variables
coupon made of randomly reinforced chopped glass mat/uretharal to depend only on the elastiostantaneoyspart of the de-
matrix materials. The coupon was subjected to a step stre®6 formation. The argument put forth by Schapery is that based on a
MPa (=17 percent ofr,;;) and, upon unloading and full recovery,viscoelastic fracture mechanics analy§i36)), it was found that
reloaded too=124 MPa(=85 percent ofo;). The lower stress the driving force forexisting cracks is independent of the vis-
level, which was well within the linear range, related the magngoelastic internal state variables. However, damage evolution oc-
tudes of the undamaged initial stiffnesses. The high stress leeeks not only by the extension of existing microcracks, but also by
was imposed intentionally in order to attain failure within a reathe nucleation of new microcracks. In this general case, it is ex-
sonably short time. The imposition of the higher stress resultedpected that the state of the viscoelastic deformation in the material
reduced initial stiffnesses, which were attributed to the presensieould have a direct effect on the formation of new microcracks.
of instantaneous damage. As may be noted from Fig. 1, all thience, the thermodynamic force conjugate to damage is expected
individual creep curves remain nearly parallel to each other up tm depend on the viscoelastic internal state variables. This is also
time t,=142 min. The creep response fox®<t, can be fitted in agreement with the internal state variable formulation for the
very accurately to a power-law form. This form is applicable focoupled elastoplastic-damage behavieg.,[31]).
all stress levels, including the linear rangé,33,34).
Consider now Fig. 2, where attention is focused on the data tr)%
correspond to strain gage #4, which is the location of failure a‘Eknowu_}dgments
time t=t;=155 min. This figure exhibits an increasing discrep- This work was performed, in part, under contract N0O0014-96-
ancy between the recorded values of total strain and the extraped821 from the Mechanics Division of the Engineering Science
lated prediction of power-law creep. This discrepancy was attriPirectorate of the Office of Naval Resear@r. Y. Rajapakse—
uted to damage growth. In fact, this interpretation of the timd2rogram Managey and in part with support from the Office of
dependence of damage growth resulted in good predictions folansportation Materials, U.S. Department of Energy, under con
time-to-failure in “static fatigue” at various stress levéi§34]). tract DE-AC05-840R21400 with Lockheed-Martin Energy Sys-
The foregoing observations suggest that damage can be quaigtins, Inc., at Oak Ridge National Laboratory.
fied by the relative reduction in stiffnegs-increase in compli-
ance, while damage growth can be expressed by the differenggferences
between the total time-dependent strain and the amount associat . ) )
Wih powe.iaw creep. T latier porion was Inerpreted as repL2] SArom &Y 985 he luence ofTine ard Temperars o e -
resenting the creep due to polymeric molecular motion. While that  ics of Composites, G. C. Sih and A. M. Skudra, eds., Elsevier, New York, pp.
molecular motion, which occurs on a dimensional scale much 177-213.
smaller that that of micro-damage, seems to proceed indepeni2] Schapery, & A. 1969 Mechanical Characterization and Analysis of inelasiic
dently of damage growth, the evolution of damage cannot proceed ComeCs Limnates Wit Growng Damagafichanics o Composte V.
in the absence of molecular motion. It was this interpretation of  AsmEg, New York, pp. 1-9.
the physical processes at hand, which was supported visuallg] Tuttle, M. E., Pasricha, A, and Emery, A. F., 1995, “The Nonlinear
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Flow in Porous Media of Variable
Permeability and Novel Effects

D.A Siginer1 The flow_of polymeric liquids in a porous medium of var_iable permeability_represented by
.Deah Fellow ASME a cylindrical tube_ rando_mly packed with _glass spheres is studlgd. The cyllno_ler represents
College bf Engineering’ two porous media of dlﬁeren‘g permeabllmes anq same porosity e}rranged in series. We
Wichita State University’ shovy that Fhe energy loss is hlghe_r_lf the polymeric solution flows f_|rst through t_he porous
105 Wallace HaIIy medium with the smgller perm.eablllty ra}ther than throggh the section of the .cylllnder Wllth
1845 N Fairmount’ the larger permeability. The dlfferenpe in energy requirements increases with increasing
Wichita. KS 67260—0044 Re_yn_olds number and may be as high asfﬁ_percent f_or Reynolds _nur_nbe_rs of Q(l)._
PSS This is a novel effect not observed for Newtonian and highly shear thinning inelastic fluids
e-mail: siginer@engrtwsu edu flowing through the same configuration. Energy requirements for the same volume flow
S. | Bakhtiyarov rate are much higher than a Newtonian fluid of the same zero shear viscosity as the
o polymeric solution. Energy loss increases with increasing Reynolds number at a fixed
concentration to level off at a Reynolds number of O(1). At a fixed Reynolds number, the
loss is a strong function of the concentration and shows large increases with increasing
concentration. For shear-thinning oil field spacer fluids ©@.1 represents a good cri-
terion for the onset of elasticity effects. For solutions of polyacrylamide-Dé& corre-
sponds approximately to the flow rate at which pressure drop starts becoming dependent
on the flow direction. Expressions for the friction factor and the resistance coefficient as
a function of the Reynolds number have been developed using the inelastic KPK
(Kutateladze-Popov-Kapakhpasheva) and viscoelastic eight constant Oldroyd models, re-
spectively. The behavior of inelastic shear-thinning and viscoelastic fluids as represented
by oil field spacer fluids and aqueous solutions of polyacrylamide is predicted qualita-
tively except the difference in energy requirements when the flow direction is reversed in
the case of the latter[DOI: 10.1115/1.1349120
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1 Introduction meability, that is, two porous media of different permeabilities

The dynamics of the flow-through porous media is increasin nd same porosity in series. We also develop two theories to
ne ayr gnp . . aSINYYredict observed effects based on the KRtateladze-Popov-
of pivotal importance to many petroleum engineering applicatio

khpash - | | ively.
such as acidizing, fracturing, secondary recovery mettiodser pakhpashevaand 8-constant Oldroyd models, respectively

and gas flooding, steam injection, in situ combustiayas cy- . .
cling, etc. Polymer solutions of different concentrations and rhe@- 1 heoretical Analysis
logical properties are increasingly and widely used in these appli-p 1 A Theory Based on a Viscoinelastic Constitutive Struc-
cations. L ) ture. To describe the shear rate-dependent viscosity, we use the

Polymeric flows exhibit significant elongational components iBoncept of fluidity developed by Kutateladze et[al1]. Fluidity
porous media due to the rapid changes in the cross-sectional a5¢q) is defined as the reciprocal of the viscosity and is conceived
of the pore space in the flow direction. Unexpectedly high flowf as depending on the shear stresg/e may define the range of
resistance has been observed in experiments performed with pelyange ofe with r as
ethylene oxide and polyacrylamide solutiofi$—3|). The influ-
ence of fluid properties such as molecular weight and polymefPo= PN<@z, ¢—¢x
concentration, rheological properties of solvent, on flow resistanfer most fluids, 7;,~0. If we consider shear-thinning fluids,
has been investigated theoretically and experiment@#y-8)). de/d7>0 when 7>r,. Further, d?¢/dm*>0de=—¢"dr,
Polymer degradation greatly affects flow resistai€d). Experi- which suggests that a phenomenological theory can be constructed
ments also show a substantial increase in flow resistance wifised on the dimensionless fluidigf and shear stress*,
respect to that exhibited by Newtonian fluids in the case of non-
uniform flows ([10]). o = PP w1

All the investigators mentioned above were concerned with ™ @0’ = @p’
flow through homogeneous porous media. However, in oil engi writing either
neering applications, flow-through heterogeneous porous media Ys
encountered frequently. In this paper, we report experimental re-g* =~ ™, n=1, 7>7; ¢*=[1—7*(1—n)]¥"D,
sults concerning the flow of Newtonian, viscoelastic, and vis-
coinelastic liquids in a porous medium with a step change in per- n#l, 7>m.

Expanding the first of these in a series we obtain

as 7—», @=¢g When r<7;.

1To whom correspondence should be addressed. 5 2
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF _ 0 (7'_ 7'1) 3

MECHANICAL ENGINEERS for publication in the ASME GURNAL OF APPLIED e(1)=@ot O(1—71)— ) T +0(6°).

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, May =~ o

23, 2000; final revision, August 15, 2000. Editor: L. T. Wheeler. Discussion on tehe coefficientd is called the structural fluidity coefficient. Keep-

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme : . . H . .
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi, ﬁ Only the first two terms in this expansion yIEIds the linear

be accepted until four months after final publication of the paper itself in the ASM uidity relationship between the ﬂUid_ity’ and the shear stress
JOURNAL OF APPLIED MECHANICS. Kutateladze et al[11] show that the linear fluidity law

312 / Vol. 68, MARCH 2001 Copyright © 2001 by ASME Transactions of the ASME



e=¢@ot+ 01, 7,~0 (1)
(6)

represents the functioa(7) rather well for diverse fluids in the
range of shear stresses of practical interest.
The structure defined byl) together with the linear momentum

balance yields the equation of motion for the axial flow of a linear Hence, the superficial velocity in a porous medium with differ-

fluidity fluid in a circular tube, ent permeabilities in series is given by
P 1d du 302 3 4 2
7_+__(“P,1_>:0 1y F0E D2AP , fDse (AP)
ax rdr dr 1501—€)’L  11251—¢)3L?
The longitudinal velocity profile is given by whereD, is defined in Eq(6). When§=0 we obtain the expres-

. 203 .3 sion for the superficial velocity of a Newtonian flujdL3]).
U= PoAP(R™—r%)  6(AP)*(R°—r°) Pressure drop in porous media is usually represented in terms of
4L 1212 ’ the resistance coefficierkt, a function of the friction factof, and

) . the Reynolds number Re,
whereL andR are the length and radius of the tube, respectively,

with AP dgnoting the pressure drop. The average velocity in the ARe.f fo APDpe3 Dpuope ;
tube is defined by =Re-f, f= pZl(1-e)" 1 )
~ Q  oR?AP N R (AP)? where
(W=Tre= 8L 2002
Ry AP 2D,eAP

If the porous medium is regarded as a conduit with a compli- ¢=¢otOr, T== 7 251—e)L"
cated cross section with mean hydraulic radRis([12]), the av-
erage velocity becomes We obtain

() ©oREAP  20R3(AP)? Re=p(1+0.13/)(1+0.08/),
2L 5L 150 _ 150(1+0.08))
The mean hydraulic radiuR,, is the ratio of the cross sectional © B(1+0.13p)2" - 1+013p
area available to the flow to the wetted perimeter, and is related t
the particle diameteD,, and porositye ([13]) where
D e 95’ DppAP _ 0D,eAP
ANCeEg @ JEETEE RPN C T
The superficial velocityu, is defined in terms of the average 2-2 A Theory Based on a Viscoelastic Constitutive Struc-
velocity (u), ture. We start with the 8-constant Oldroyd model,
302 3 4 2
U0:<u>e: o€ DDAP + GDpE (AP) Tij+)\l mTij"‘Um,iij"'Um,iji +MOTkkdij
C  721-¢€)’LC  5401-¢)°L%C’

where C is the tortuosity factor which accounts for the extra = #a(TimTimj + TimGimi) + 8193 TGy

length of the particle paths in the porous bed. Analysis of most of
the experimental data sugge€is=25/12=2.0833([13]). When —2770[ dij X
the permeabilities of the pieces of a porous medium vary, the

D
Dt Jii * Umidmj+ dimUn|

average permeability depends on the manner in which the pieces
are arranged 14]). WhenN porous media of different permeabili- —2p20im0mjt 28, 6;dmpAmn | »
ties are in series, the average permeabiktyf the composite
medium is the harmonic mean, o +P& =T,
N 1 o wherer;;, oy, andd;; represent the extra stress, total stress, and
K=N 2 Ki (3) rate of deformation tensors. It can be shown that this constitutive
! structure yields for the viscosity at a given shear ratg ([16])
According to the Blake-Kozeny-Carman equation, the perme- 14 0032
ability K; of the ith medium in series is related to the particle o Lyz ®)
diameterD ,; by 7o ltoyy
D2 3 where 74 is the zero shear viscosity, ang, together witho,
KF%- (4) represent combinations of the eight material parameters in the
180(1-¢) 8-constant Oldroyd model, and can be considered to be indepen-

The actual size of the spherical particles has no influence on t(ﬁe‘?nt material parameters in their own right. If this model is to

porosity([15]). We assume that the porosities of the porous medE%Iect the behavior of real fluids in simple shear, that is, when the

in series is the same even though the permeabilities are differgffar Stress curve always seems to rise monotonically with shear
as is the case in our experimerigection 3 rate, oy and o, must be restrictedy,<o,0,/0,=1/9 ([26)).
We meet these criteria in our experiments.

e=€, i=1,...N. (5) The steady flow problem of an 8-constant Oldroyd fluid in a
cylindrical tube has been solved by Williams and Biid]. They
Substitution of Eqs(4) and(5) in Eqg. (3) leads to the following determine that the pressure drag® in a tube of lengthL and
expression for the average particle diameter: radiusR is given by
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Vo AP o, 1+nX
- __R=AY/ =01V =_°< = Air
2770 L R=A X, X 0'1')/|r:R, n 0_1, 1+ X .

© | ¢

An expression for the average velocify) in terms of the wall
shear rate can be developed, ] ) 3
\\
R 2(AVX)%
1
F= En3x3—3n2(n—1)x+3n(n—1)(2n—1)|n(1+X) 4
L "= o+ (7n-1)x 10
—5 X\ 13x/ [en+ (7n—1)X]. (10)

We use the concept of hydraulic radius as defined in ®y. Fig- 1 Experimental set-up: (1) filling tank; (2) test tube; (3)
introduce the average velocity) and the superficial velocity,, ~ ValVe, (4) measuring cylinder

R
=g W=77 (11)

r=R

i i distilled water to determine total pore volume. The porosities of
and finally obtain the pressure drdg> over a lengtfL from Eqs.  poth parts of the packed bed were found to be 0.40. As a check the

(9) through(11), porosities were also determined by weighing the spheres filling
67LA X the tube. The same value was obtained for the porosities of both

= \/ ) (12) porous media in series.
Ry o To avoid the entrance and exit effects at the ends of the porous

in terms of the average particle diamey imbedded irR;, given medium, the difference in required pressure for two porous media
by Eq. (6) and Eq.(2), respectively. Substitution of Eq¢12), Of different lengthg30 and 50 cmwas measured at the same flow
(11), and(8) into Eq. (7) yields the friction factor, the resistancerate ([18]). This pressure difference is the pressure drop across a

coefficient and the Reynolds number, porous medium whose length is the difference between the
lengths of the two porous media usexg., 20 cm which is free
_ 4867,C?B2A oy ~ 108C X2 of all end effects. The permeability of each porous medium in the
f= pR? X' T OXZ-A3EY (13)  series arrangement was determined by pumping water at a con-
stant rate into the cell packed with particles of the same diameter
pRﬁB X F and by measuring the pressure drop. Using Darcy’s equation,
Re=gcan Vo Bl ae—as 9
We note that in contrast to the case of the viscoinelastic con- u :5 A_P
stitutive structure used in the previous section the tortuosity factor u oL

used in Eq(11) in the case of a viscoelastic constitutive structure

is not constant. It is_a strong funct_ion of the elastic prope_rties ?rie permeabilities of flow cells packed with glass spheres of 1000
the fluid together with the properties of the porous medium. Nm and 3000um in diameter were calculated to be 1.085

fact, we determine in Section 4 of the present paper that if 5 5 . )
chooseC=1.3 andC=3.0 for two solutions of polyacrylamide 10bi”;:mz antid?h%? }qu(s)cimz,l rgglpf;g\_/glyﬁghe average per
one percent and two percent in concentration by weight, resp&‘-ea y according to EQ.2) 1S L. ent.

tively, we get the best qualitative description of the flow behavior 3.1 Liquids Used. Newtonian liquids used in the experi-
that this model can provide in the context of our experimentfents are distilled water and a glycerol-water solution with a
which suggests that the tortuosity factor may assume increasinglgcosity of 0.0184 Pa& at 20°C. The non-Newtonian liquids in-
larger values with increasingly elastic fluids, that is, higher cowestigated are a polyacrylamide based oil field spacer fluid and

centrations of polyacrylamide in this case. agqueous polyacrylamide solutions of one percent and two percent
) concentration by weight prepared with distilled water and poly-
3 Experimental Apparatus and Procedure acrylamide of molecular weight810°. The oil field spacer fluid
The experimental apparatus used in this work is sketched gantains 0.6 percent polyacrylamide by weight with several dif-
Fig. 1. ferent proprietary additives.

The liquid is supplied from a pressurized feed tank 1 to the test The polymer solutions were carefully prepared by slow shaking
section 2 with the porous medium. The flow rate is controllet® ensure that no degradation of the polymer occurred. Viscosities
through the valve 3 located at the exit of the test tube. At the exiere measured in a rotational viscometer Rheotest RV-2 at 20°C.
the test liquid is collected in the graduated cylinder 4 and thEhe results show that the non-Newtonian viscosity of the spacer
mean volumetric flow rate is measured by the weight method. fluid and the polymeric solutions of both concentrati¢ose per-
stainless steel flow cell with an internal diameter of 4.5 cm and@nt and two percent by weighis adequately described by the
length of 30 cm, packed with glass spheres with diameters lgtear fluidity model in the shear stress range relevant to our ex-
1000+50 and 3008 50 microns in series has been used for theeriments, 6<7<35 Pa(Fig. 2).
experiments. Spheres of different diameters fill each half of theWe present in Fig. 3 viscosity versus shear rate data for the
tube. To prevent the mixing of glass spheres of different diametdiguids used. We determine the values of the parameterso,
and to contain the packed bed, fine mesh screens are attachedn@7o in Eq. (8) for both one percent and two percent solutions
the inlet, exit, and middle sections of the flow cell. To achieve @f polyacrylamide by a best fit of the data points. We find that for
stable packing arrangement, the spheres have been packed int®fife percent and two percent PAAn=o0,/0,=0.286, o,
cell by mechanical vibration. The flow cell packed with gla3§3.1055*2, 7o=0.133Ns/M) and (n=0,/0,=0.250, o,
spheres of a kind was weighed before and after saturation 5y8.10°°s™2, 7,=0.150 Ns/m), respectively.
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Fig. 3 Viscosity as a function of the shear rate for two aqueous solutions of polyacrylamide

(A-1 percent, (J-2 percent) and for the spacer fluid

4 Results and Discussion
Two sets of experiments have been conducted for each flui

Tests (I): Flow proceeds through the porous medium
with the smaller permeability towards the porous medium
with the larger permeability.

Tests (Il):Flow proceeds through the porous medium
with the larger permeability towards the porous medium
with the smaller permeability.

Journal of Applied Mechanics

()

Figures 4 and 5 show the results obtained in the experiments.
J-or water and the glycerol-water solution experimental results are
quite well represented by E7) with a constant resistance coef-
ficient A=150. We conclude that at Reynolds numbers less than
10, inertial effects are negligible and viscous forces are dominant
which implies that the pressure gradient is directly proportional to
the superficial velocity. As a consequence, the resistance coeffi-
cient assumes constant values. For Reynolds numbers 10 and

MARCH 2001, Vol. 68 / 315
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Fig. 4 Friction factor as a function of the Reynolds number. Tests I: (@)—distilled water, (€)—
glycerol /water, (A)—one percent PAA, (H)—two percent PAA, (4)—spacer fluid; Tests Il: (O)—
distilled water, (<l)—glycerol-water, (A)—one percent PAA, (OJ)—two percent PAA, (<¢)-spacer
fluid. Solid curves correspond to theoretical predictions obtained using Egs. (13) and (14) or
Egs. (7): (—) Oldroyd model, one percent PAA,  7,=0.133 Ns/m?, n=0.286, 0,=3.10"°s72, C
=1.3; (—-—) Oldroyd model, two percent PAA,  1,=0.150 Ns/m?, n=0.250, 0;=3.10"%s72, C
=3.0; (— — —) spacer fluid, @/¢,=0.06 m¥N; (...) Newtonian fluids, distilled water, and
glycerol /water solution.
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Fig. 5 Resistance coefficient as a function of the Reynolds number. Tests I: (@)—

distilled water, (<)—glycerol /water, (A)—one percent PAA, (H)—two percent PAA, (4)—
spacer fluid; Tests Il:  (O)—distilled water, (<I)—glycerol-water; (A)—one percent PAA,
(O)—two percent PAA, (< )—spacer fluid. Solid curves correspond to theoretical pre-
dictions obtained using Egs.  (13) and (14) or Egs. (7): (—) Oldroyd model, one percent
PAA, 7,=0.133Ns/m?, n=0.286, o;=3.10"°s72, C=1.3; (—-—) Oldroyd model, two
percent PAA, 7,=0.150 Ns/m?, n=0.250, 0;=3.10"%s72, C=3.0; (-®-) KPK model, one
percent, PAA; (-O-) KPK model, 2 percent PAA; (— — —) spacer fluid, 6/¢,
=0.06 m%N; (- - + *) Newtonian fluids, distilled water, and glycerol /water solution.
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larger, the magnitude of the inertial forces becomes large enoutgw parameters in the case of the spacer fluid, and the pressure
to influence the flow and the resistance coefficient starts increasep required for the same flow rate in tests | and Il is the same
ing. Similar results were obtained in previous investigationdig. 5).
([20]). The friction factor and the resistance coefficient for New- In the case of the polymeric fluids, the flow resistance becomes
tonian fluids do not depend on flow direction as we obtain th@igher and the pressure drop larger compared with Newtonian
same data when the flow direction is reversed, that is, data ftwids as the Reynolds number is increased. The resistance coeffi-
tests | and Il are the same. cient increases dramatically with concentration. For instance, at
When the Reynolds number is smaller than 0.04, the pressiRe=1.0, the resistance coefficieAtand the pressure drop for the
drop required in the case of the spacer fluid for the same flow raige percent solution in the case of te@ts are four times larger
as the Newtonian fluid is higher than that of the Newtonian fluidhan the Newtonian case. But when the concentration is doubled
and increases with decreasing Reynolds numbers. For Reynalg¢o percent solutio) the resistance coefficient becomes 12 times
numbers larger than the crossover value 0.04 and smaller than l@rger than that for the Newtonian liquid. Frictional effects in-
the pressure drop required for the same flow rate as the Newtonisase at a much faster rate than the rate of increase of the con-
fluid is smaller than the Newtonian case, and decreases with gentration, and much larger pressure gradients are required at the
creasing Reynolds numbers. At R@.7 frictional effects are 20 same Reynolds number, that is, for the same flow rate. At any

percent less than the Newtonian case. concentration, the resistance coefficient increases rapidly with in-
A criterion for the importance of elastic effects can be estalgreasing Reynolds numbers, and the rate of increase of the resis-
lished on the basis of a Deborah number defined as tance coefficient becomes steeper as the concentration increases at
the same Reynolds number. The resistance coefficient seems to be
De— 7071/2 constant at very small and relatively large Reynolds numbers with
Dp/ug’ a steep change in between. As the concentration increases, the

Reynolds numbers denoting the upper and lower boundaries of the
where, 79, 712, Dy, @andug are the zero-shear-rate viscosity, theegion where the change takes place become smaller. For in-
value of the shear stress at which the viscosjitg half of 75, the stance, for the one percent and two percent PAAs constant
particle diameter of the porous media in series given by(Bp. when Rg<0.0115 and, Re<0.01, respectively. But, it shows an
and the superficial velocity, respectiveyi2]). The variation of order of magnitude change with increasing Reynolds numbers
De versus Re is shown in Fig. 6. SadowEk®] has established when Re>Re, and becomes constant again wher>Reand, Re
experimentally that elastic effects seem to set in at about Del.2, respectively.
~0.1. This critical Deborah number corresponds to a ReynoldsFor the same polymeric solution, flow resistance depends on the
number equal to one in the case of the spacer fluid, Fig. 6. Rew direction. Experimental data shows that energy loss is higher
~1 is approximately the Reynolds number at which deviatioristhe polymeric solution flows first through the medium with the
from the predictions of the linear fluidity model start, Fig. 5. We&maller permeabilityK; rather than through the section of the
are led to conclude that Sadowski's criterion works quite well fdfow cell with the larger permeabiliti(, first (Figs. 4 and & The
shear-thinning fluids of this type. When the Reynolds numbelependence of the resistance coefficient on the flow direction is
exceeds 2, both the friction factor and the resistance coefficigniite distinct, and the difference may be as large as 25-35 per-
increase rapidly and at R& they are at least three times largecent. Flow resistance increases with increasing Reynolds numbers
than the data for Newtonian fluids. The friction factor and that a fixed concentration when flow direction is changed fitom
resistance coefficient obtained experimentally are reasonably wellK; to K;—K,(K;<K,). Flow resistance also shows strong
predicted theoretically by the linear fluidity model whéf¢, dependence on concentration when flow direction is reversed.
=0.066 ni/N for Re<1. Flow direction again has no effect on theThat is, at the same Reynolds number increasingly larger pressure
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drops are required for the same flow rate with increasing concewus media in series of equal length and of different permeabilities

tration, or equivalently increasing elasticity. As the concentraticemd same porosity. The results can be extended heuristically to an

becomes larger, the difference in energy requirements for thaisotropic porous medium of constant porosity and continuous

same flow rate in th&,—K; andK;—K,(K;<K,) directions permeability gradient.

starts becoming noticeable at smaller Reynolds numbers. For inWe find that for two Newtonian liquids, water and a water/

stance, whereas the critical Reynolds number for the one percghytcerol solution, the resistance coefficient is constant when iner-

solution is around 0.11, it recedes to 0.065 for the two percetil effects are negligible, Re10. A highly shear-thinning oil-

solution. Assuming that the criterion Bé.1 for the onset of field spacer fluid requires less energgmaller resistance

elasticity effects applies as well to the polyacrylamide solutiorefficien} than a Newtonian fluid for the same volume flow rate

we determine the critical Reynolds numbers-ef.2 and~0.15 for Reynolds numbers between 0.08 and 1.5. Elastic effects start

for the one percent and two percent solutions of polyacrylamideecoming important at a critical Deborah number of 0.1, or

respectively, from Fig. 6. These critical Reynolds numbers correquivalently at a critical Reynolds number of one. The pressure

spond approximately to the flow rate at which a significantldrop required for the same volume flow rate is higher than the

higher pressure drop is required when the fluid flows first througtlewtonian case for Re2, and increases rapidly with increasing

the lower permeability medium, in particular for the one percemeynolds numbers.

polyacrylamide solution, Fig. 5. Experiments with two polymeric solutioriene percent and two
The predictions of the 8-constant Oldroyd model using the vipercent PAA show that at all Reynolds numbers the pressure

cosity functions for the polyacrylamide solutions determined usirop required for the same volume flow rate is much higher than

ing the data in Fig. 3 are also shown in Fig. 5 together with thiae Newtonian liquid of the same zero shear rate viscosity. Energy

predictions of the inelastic KPK model using the fluidity datdoss increases with increasing Reynolds numbers to level off at a

given in Fig. 2. There is better qualitative agreement with the dalReynolds number oD(1). The pressure drop required at that

in the case of the 8-constant Oldroyd model for the lower conceReynolds number is an order of magnitude larger than the pres-

tration fluid except for very small Reynolds numbers where th&ire drop for the Newtonian liquid, and increases with increasing

plateau is not predicted at all in the case of either concentratiaancentration.

The inelastic KPK model also predicts the trend for both concen- The pressure drop required for the same volume flow rate when

trations, that is the steep increase in the resistance coefficient vilie flow direction is switched fronK;—K, to K,—K;(K;

increasing Reynolds numbers, but fails to predict the plateaus folK,), where K; represents the permeability, is considerably

the resistance coefficient at both high (RB and low (Re higher. The difference in energy requirements increases with in-

<0.05) Reynolds numbers. The fact that both constitutive modalseasing Reynolds numbers at any concentration to reach an al-

can qualitatively describe the steep increase in the resistance mmst constant value at R€(1). At Re~O(1) it is as much as 25

efficient with increasing Reynolds numbers between the high apdrcent and 35 percent for the one percent and two percent solu-

low plateaus may not be surprising after all and may be expections of polyacrylamide, respectively.

as the average velocity expression developed for the 8-constarithe Newtonian behavior is well predicted theoretically when

Oldroyd model(Eq. (10)) does not reflect elastic effects. What isnertial effects are negligible. Two theories built on the inelastic

surprising is that the 8-constant Oldroyd model can predict th€PK (Kutateladze-Popov-Kapakhpashgwmnd viscoelastic Old-

upper plateau regardless of the particular value of the tortuosityyd models show only qualitative agreement with experimental

factor used whereas the KPK model completely fails to do so data for the nonlinear fluids used. But, predicting the difference in

either concentration. We remark that the tortuosity fa@avhen energy requirements for viscoelastic fluids even qualitatively

used in conjunction with viscoelastic modéEq.(11),) becomes when the flow direction is reversed remains a challenge.

a function of the elastic properties of the fluid. The theoretical

curves in Fig._ 5 for the 8-constant Oldroyd m_od(_al have b'ee_n oRiomenclature

tained by assigning values @for the best qualitative description

of the flow data. We find thaE must be 1.3 and 3.0 in the case ofd;j = rate of deformation tensor

one percent and two percent PAA, respectively, which suggeddy = particle diameter

that the tortuosity factor may increase with increasing elasticity. ItC = tortuosity coefficient

is clear that the theory presented here is incapable of describing = friction factor

the considerable increase in pressure drop when flow direction i = length of the test tube

switched fromK,—K; to K;—K,(K;<K,). At this point in K = permeability

time, we cannot offer a theory to explain this novel phenomenonR = radius of the test tube

which is closely governed by the behavior of the test liquids ifRn = hydraulic radius

elongational flows. Due to rapid changes of the cross-sectionaté = longitudinal (axial) velocity

area of the pore space in the flow direction, flow through packedt) = average velocity

beds exhibits large elongational components of velocity. An intlp = superficial velocity

crease in the extension rate may cause an increase in the appar&ht= volume flow rate

viscosity and in the flow resistance in elongational flows of highP = pressure

molecular weight polymer solutions. ¢ = fluidity or reciprocal of viscosity
Experimental results obtained concerning the energy loss with@@ = lower bound of fluidity below a limiting value of the
step change in permeability can be heuristically extended to po- shear stress

rous media arranged in series over a lengthwith increasing ¢~ = upper bound of fluidity reached at large shear stresses
permeabilities K, <K,<---<Ky_;<Ky. If N is taken large ¢ = structural fluidity coefficient

enough, we may obtain a close enough approximation to a non€ = POrosity

homogeneous porous media with a continuous permeability grad = resistance coefficient

dient in the flow direction. Experiments imply therefore that in an p = density

anisotropic, nonhomogeneous medium with constant porosity tiig = total stress tensor

energy loss is considerably higher for the same flow rate if flowi; = extra-stress tensor

proceeds in the direction of the positive permeability gradient. 7 = shear stress

i T, = shear stress at which= 7,/2
Conclusions 1p = Shea st

Experiments were run in a porous medium with a step change; = viscosity
in permeability represented by a flow cell with two adjoining po-7, = zero shear viscosity
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A general nonlinear theory of isothermal shells is presented in which the only approxi-
mations occur in the conservation of energy and in the consequent constitutive relations,
which include expressions for the shell velocity and spin. No thickness expansions or
kinematic hypotheses are made. The introduction of a dynamic mixed-energy density
avoids ill-conditioning associated with near inextensional bending or negligible rota-
tional momentum. It is shown that a variable scalar rotary inertia coefficient exists that
minimizes the difference between the exact kinetic-energy density and that delivered by
shell theory. Finally, it is shown how specialization of the dynamic mixed-energy density
provides a simple and logical way to introduce a constitutive form of the Kirchhoff
hypothesis, thus avoiding certain unnecessary constraints (such as no thickness changes)
imposed by the classical kinematic Kirchhoff hypothegi®Ol: 10.1115/1.1357870

1 Introduction No such kinematic hypotheses are introducedlih The present
note modifies and extends the approacheglin5] in several

In aclassicaltheory of shells the basic kinetic ingredients are ays:

stress resultant tensdr and a stress couple tenddr That is, no
moments higher than the zeroth and first appear. 1 In place of a constant rotary inertia coefficigior, more
Chapter VIII of Libai and Simmond$1] shows that exact generally, a constant rotary inertia tensdrintroduce avariable
integral-impulse equations for a shell follow naturally and simplyotary inertia coefficient, depending on position and time and cho-
without any kinematic assumptigrfsom analogous equations for sen so thathe kinetic energy of the shell is as close as possible to
a three-dimensional continuum. The descent from three to twle exact three-dimensional kinetic ener@iote that if one at-
dimensions leads to definitions bf and M in terms of integrals tempts to describe the gross motion of any deformable body by
through the (possibly variablg shell thickness of the three- the motion of its center of mass and some mean rotation about the
dimensional first Piola-Kirchhoff stress tensor and to definitiorgenter of mass only, then, in general, it is impossible to account
of translational and rotational momenta, and R, in terms of for all the kinetic energy of the body. Think of a ball that under-
thickness integrals of the velocity and the deformed position gpes purely radial motiop.
the three-dimensional shell-like bodly. 2 | define an isothermatlastodynamicshell as one for which
From the localdifferential) form of the equations of motion of there exists an energy density(kinetic plus elastir; depending
a shell, which arexactand contain the translational and rotatoryn L, R, €, k, and possiblyy, the position onM, a reference
inertia terms,L and R, where the superior dot denotes differensurface of mass to be specified presently. Then, using an idea
tiation with respect to time, one obtains a power identity by intrgsuggested to me independently by Ladeveand Makowski, |
ducing a two-dimensional velocity and spinand w,—both ini- definev=e, andw=e¢,5. Thatis, | consider inertia terms as part
tially undefined—and applying Green’s theorem. This produc&$ the constitutive relations. .
two-dimensional extensional-shear and bending strain tenors, 3 By means of a partial Fenchel-Lagrange transformation, |
andK, whose local ratess* andK*, are conjugate tol andM, Introduce amixed elastodynamic-energy densitfL,w.n.k;y).
respectively. However, in dealing with energy and constituti@n€ motivation is that, in the static theory of shells, the associated
relations, it is convenient to introduce “back-rotated” stress ré=Uler equations are well-conditioned in the sense that they require

sultants and couples, andm, and extensional-shear and bending!® SPecial treatment in the extreme cases of membrane or
strains,e andk, as explained later. endlng-domlnate_d b_ehaV|(J[r1_,6]). . . .

The inclusion of rotary inertia in shell theories derived from the 4 Another_ motivation for |ntr0du0|ng th_e _dyr_1am|g: mixed-
three-dimensional equations of motion by integrating through tif&\e"dy densitysis that a rather obvious specialization yields what
thickness has been considered by Habip and EbciggiuHabip Libai and[1] have called theonstitutive Kirchhoff hypothesisa

[3], Naghdi[4], Antman[5], and Libai and Simmonds], among hypothesis based, not on a priori kinematic assumptions, but on
others. All the definitions ifi2—5] resulting in afinite set of shell certain approximations in the constitutive relations. The latter, by

equations use a priori kinematic hypotheses on the thretﬁ;?'r very nature, can only approximate actual material behavior.

; : h ) us, all approximations in isothermal shell theory are thrown
Fé?%ncf |(()7n 2)' 2}? c}l(olnz (szstfgef EQ' I]elg nsaeg q%gt?or?;l[\z/]glzli) %fg )[ng into those parts of the theory that are unavoidably approximate.
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MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED H ;
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug.2 Geometry and Exact Equatlons of Motion of a Shell

7, 2000; final revision, Oct. 19, 2000. Associate Editor: R. C. Benson. Discussion on A shel| may be defined as a material body such thatirfi@l
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi e . . . .
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, al 't'or‘x of each m_atenal par_tlcle b_elongs to _a famlly of nonin
will be accepted until four months after final publication of the paper itself in th_&ersecnng surfaces in three-dimensional Euclidean space. That

ASME JOURNAL OF APPLIED MECHANICS. IS,

320 / Vol. 68, MARCH 2001 Copyright © 2001 by ASME Transactions of the ASME



Xe8y.0), yeR, —H=(=H @ |=j (VL + &R)dR (10)
whereR is some reference surface aHdis some given positive R
constant with the dimensions of LENGTKn general, the shell ig theinertial powerand
may have variable thickness agds not distance along the nor-
mal to’R.) Themotionof the shell is then a vector-valued function
of the formx(y, {,t).
As in [1], it simplifies the equations that follow and entails no )
loss of generality to takéR=M(y,0), where M is the time- is thedeformation power
dependensurface of massavhose position is defined by To define extensional-shear and bending strains, imagine the
. motion of the shell at each poigtcarryingVy'=Vy into Vy' by
iy )= v a rigid-body rotation, represented by ttatator Q(y,t), followed
M)y (y.H J, pxpdg. ) by a stretch 1+E(y,t), where 1=Vy+bb is the three-
dimensional identity tensor. That is,

Vy'=(1+E)-Q-Vy, E-Q-b=0. (12)

n
m(y)sf pudl (3) (This represents anodified version of the polar decomposition

- theorem because, in gener&8# ET.) The rotator is defined in
is the mass per unit area &, [“=/",,, pis the initial mass/ terms ofe—which itself is still undefined—as the unique solution

volume of the shell material is a geometric factor define@m- of the following differential equation with initial condition:
plicitly) by the relationdV= u(y,{)dRd, wheredV is a differ- S _

ential element of volume in the shell 4y,), and dR is a Q=wXxQ, Q.0=1 (13)
differential element of area oR. (See the footnote on p. 456 of Note thatQ-Q"=1 implies that

[1] for an explicit formula foru.) For convenience, assume tfiat .

is smooth and orientable with an associated unit notret each 0x1=Q-Q". (14)
pointy. As shown in[1], the local(differentia) equations of mo- From (12),

tion of a shell, under suitable smoothness conditions, can be writ- _

ten in coordinate-free form as (Vy:Q)'=Q"-Vy'=(1+e)-Vy, wheree=Q"E-Q. 15)

T — T V| —
V-NTEp=L o and V-MI=(N-V)XYHI=R. () g by (13) and the identityVy-(wx Q)=(VyX )-Q, the
Here, “T" denotes “transpose” and is the surface del operator, time derivative of(15) yields
defined by R . R
(Vy+VyXw)-Q=Vy-e"=(1—bb)-eT=e'. (16)
dF=dy-v7, ®) The last step in this equation follows from (12and (15),
whered 7 is the differential of any suitably smooth scalar, vectoryhich imply that b-e"™=0 and hence thab-e"=0. With the
or tensor defined ofk. definitions
Expressions foN andM in terms of thickness integrals of the .
three-dimensional first Piola-Kirchhoff stress tensor are given in v=y and n=Q"N, 7
Chapter VIII of [1]. These tensors have the following physicaj; fgllows that
meaning: letvds denote an oriented element of arc @aty,

where v is a unit vector perpendicular tb aty andds is arc N:(Vv+ Vyx w)=n:e. (18)

length. ThenN-» and M-» are, respectively, the net force and

T
moment exerted across the strip generated by the differential eFIEee_cause of the factoR " in (1.5)2 and (17)%’ e andn may be
ment of arequds as¢ goes from—H to H by the material lying called a back-rotated extensionghear strain and stress result

. . i |y.
on the same side of the strip &s ant, respecte . . . ) .
The present study is mainly concerned with the inertia terms inAlS in [1], tlhf).bendlng strain tenset is defined by the spatial
(4) which are defined as analogue of14):
N Kx1=VQ-Q'. (19)

N
L(y,t)zf_ pxudl  and R(y,t)zf pzxzpdl.  (6)  As shown in[1], (14) and(19) imply the relation

D=f [N:(Vv+VyX w)+M:Vw]dR (11)
R

Here,

In (6),, Vo=K+KX . (20)
2y, ) =x—y ) Note by (13) and the identityK+(ewX Q)= (KX w)-Q that
is thedeviationfrom the surface of mas$. Vm-Q:(k-Q) " (21)
3 The Mechanical Power Identity and Strains Thus, with the definitions
Letv andw be a shell velocity and spin, as yet undefined. Then m=Q"™-M and k=K-Q, (22)

take the dot product of (4)with v, the dot product of (4)with .
w, add the resulting equations, integrate oRerand use Green’s it follows from (21) and (22) that
Theorem to remove derivatives dw and M. This leads to the M:V w=m:k. (23)

mechanical power identi . . . .
P v The motion of a shell is the pair of vector-tensor functions

W=1+D, (8)  {y(y,1),Q(y,t)}. Because the nine parameters that define the or-
thogonal tenso® are not all independentt may be conenient to

where expressQ in terms of a finite rotation vectogs ([1]), in which
case the motion of the shell may be defined as the paiecfor
W=f (V'N+“'M)'Vd5+f (vf+el)dR (®)  valued functionsy(y,t),#(y,t)}. Given a suitably smooth mo
" r tion, a compatible set of spins and strains may be computed from
is theexternal mechanical power (12), (14),and(19). On the other handf one wishes to work with
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the extensionashear and bending straing and K (or, alterna What can be said of the»-dependence off? If we mimic
tively, with e and k), then compatibility conditions must be satis rigid-body dynamics but at the same time recognize that a shell is

fied, as explained if1]. deformable, then we might assume that
4 An Elastodynamic Shell R=I(n.ky)-, (31)
For conciseness, let wherel is a rotary inertia(or moment of inertia tensor. This

would lead to a dynamic mixed-energy density of the form
A=(L,R,e,k) and E=(v,w,n,m) (24) Yy gy y
—lrm-1. : . ~ .
_denote, respecti\_/ely, argument listand it_sconjugate Then an g=z[m"L-L+wl(nky)w]+6(nky)]. (32)
isothermal shell iglastodynamidf there exists an energy density the getermination of, like the determination o must come
¢ depending om and possibly positioy such that from experiments or from some sort of descent from a three-
E-A:'s(A,y) (25) dimensional energy density.

i ) o A simpler approach is to assume that
and such that the equations of moti@n are satisfied. These latter

conditions may always be met by a suitable choice of the surface R=1(nk}y)o, (33)
load p and the surface couple

Now suppose that the unknowns compostalso depend on
A andy only. Then, becaus& may always be assigned any value g=3[m L-L+1(nky) we+o(nky)]. (34)
at any fixed point orR and at any fixed time, it follows fror25)
thatZ=e,,, providing ¢ is a differentiable function ofA. That
is, (25) implies theconstitutive relations

wherel is a scalar rotatory inertia coefficient. Then,

This choice may be supported on two grounds: First, in practical
problems involving not-too-thick shells, the rotational momentum
R plays a minor role, as reflected by the magnitudeafl which
V=g, , w=g,r, N=g,,, M=g,. (26) is O(H?), whereasw is an important, non-negligible kinematical
ingredient. Thus, ignoring the contribution & to the energy
density ¢ would imply that =0, i.e., the constitutive relation
(26), would be ill-conditioned, whereas ignoring the contribution
; ; _ ; of w in (34) has little consequencand does not imply thab=0.
5 A Dynamic Mixed-Energy Density And second, as | now show, there always exists some skctiat

Despite the popularity of minimum energy formulations both ifninimizes the difference betweds,,;, the exact kinetic energy
the finite element literature and from a mathematical standpo

. _ I&r unit area ofR of the shell, ands (ML L+ w-w).
(uniqueness and convergence proofbere are compelling rea- By (2), (3), (7), and (17)

sons to work with adynamic mixed-energy densif#fL ,w,n,K;y) T '

instead of with the positive definite energy density ,R,e k;y). 11+ .. 1 o,
First, depending on the external loading and kinematic boundary Kextzzf PX‘XMdéVdR—E( mv-v+j pz-zpd{
conditions, a shell may experiengeearly inextensional bending. B -

In this circumstance, the constitutive relatios ¢, becomes ill- | et

conditioned. The components of the stress resultant tensor are _

then, essentially, reactive quantities, best computed from the z=\(y,{,Hu(y,{,t),  where [u]=1, (36)
equations of motion(Think of the classical theory of planarSO that

curved beams: the axial strain vanishes, by assumption, but not, In _

general, the axial forceAnd second, by working with a dynamic Z=AU+\U, u-U=0. (37)
mixed-energy density, the a pridiinematic Kirchhoff hypothesis

(“normals to the undeformed reference surface deform withodhen,
stretching into normals to the deformed reference surfacedy f+

This relationdefinesw, whereas the expression for must be
consistent with (17).

. (35)

be replaced by thedynamig constitutive Kirchhoff hypothesigs
does not depend on the spém or the transverse shear stress re-
sultantQ. The effect, as will be seen, is to make the transver:
shearing strain and the rotary inertia vanisfithout implying that
Q or w do. + )

A dynamic mixed-energy density may be defined via the partial R= f pA2uX Updl. (39)
Legendre-Fenchel transformation -

+ .
p3udr= f p(R2+ 22012 ud, (39)

Whereas, by (6), (36), and(37),

H(L,o,n,ky)=inf{e(L,R,ek;y)— wR—n:e}. (27) The scalar and vector functionsand \2ux U that appear in the
R.e integrands of(38) and(39) are independent in the sense that as-
If e is differentiable and grows faster th&ande as these un- Sig”i“‘%’ of just one of these i_s not suffigient to determine (36).
knowns approach infinitfso that the infimum occurs at finite ThUS, ifA=g(y,{,t), some given function, then
values ofR ande), then we have theartially inverted constitu- t
tive relations >\=>\(y,§,0)+f 9(y.¢,ndr, (40)

0
V:‘ﬁnl_: R:_‘//:w: e:—w,n, m:‘ﬁxk' (28) . . . . . .
where the first function on the right may be assigned at will. With

6 Choosing the Kinetic-Energy Density \ known, the relatiom\>ux u=g(y,Z,t), some given function,
From (2), (3), (6),, (7), and (17) can be rewritten as
L=mv. (29) u=Qxu, Q=r"7g. (41)
Hence, (28) implies that the dynamic mixed-energy density habt anyy and/(, this is just t_he equation fo'r a unit vector rot_ating
the form at a variable angular velocit2, so(41) obviously has a solution,
. . starting at any arbitrary initial condition(y,Z,0).
g=3m L-L+6(w,n,k;y). (30) Thus, sincem™*L-L=mv-v, it follows from (35), (38), (39)
that
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then the constitutive relations (28), imply thatR=0 and
Eap=— U™, E,=0, M@=y, = M*=0.
(49)

In coordinate-free form, the constitutive dynamic Kirchhoff hy-
(43) pothesis is thaty depends only o, n, k, and possiblyy, where

n=3(Vy-n+n'-Vy) (50)

1 1(+ .
min Kexti(mV’V+|w'w)] :EJ pN2udi>0, (42)
| -

providing the inertia coefficient is defined as

|/ pA2uxupdZ|?
JZpN*uPpdg

Of course] cannot be computed from its definitiogfh3) any more

than, sayl can be computed from its definition (£)a formula

for I(n,k;y) is part of the unavoidably approximate description of =Lk 0T

the dynamic mixed-energy densiy The simplest approximation 2(k-Vy+Vyk). (51)

is to setl=["p|z|?xd¢, which is the initial value of the right (Recall thatVy=Vy".)

side of(43) in aKirchhoff motion z=Q(y,t)-z(y,{). Other, more

elaborate, approximations may be constructed, especially té)r
shells that undergo significant thickness changes.

and

Conclusions

) o _ ) | have presented a general nonlinear theory of isothermal, elas-
7 The (Dynamic) Constitutive Kirchhoff Hypothesis todynamic shells which makes assumptions only in the constitu-

Perhaps the simplest way to describe this new form of the h ive relations, which are intrinsically approximat&hey rest ul-

pothesis is to introduce, in the tangent plane at each point of t@ately on experimentsin particular, in the equations of motion

reference surfac®, a set of independent vectoys,, a=1,2. of a shell, the inertia terms—which, of course, involve material

These vectors need not be associated with a set of surface Ci:gp_pertles—are regarded as given by constitutive relations, fol-
8

dinates. The back-rotated stress resultant and bending strain {@}}4N9 @ suggestion made to me independently by Lazewnd
sors may then be given the component forms akowski. Problems of ill-conditioning that can arise in near in-

extensional bending are avoided by the introduction of a dynamic
n:N“ByBya+ Q%by, (44) mixed-energy density. This last maneuver allows an alternative
form of the Kirchhoff hypothesis to be introduced which avoids
any a priori kinematic constraints imposed by the classic form of
k=K,gy*y#xb+K,yb, (45) the hypothesis.

and

where a repeated index is to be summed from 1 to 2 iy,
= Jy, the Kronecker delta. Thedynamic) constitutive Kirchhoff References
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Stability of the Shanley Column
Under Cyclic Loading

Department of A E.dﬁfﬂo?nﬁ This paper presents a numerical study of the Shanley column under cyclic loading. The
epartment Of Aerospace an Engi(r)]ezir]ilrsg model includes intermediate deformation kinematics. The constitutive model is based on

the Dafalias-Popov model. Results for fully reversed, symmetric load or displacement-
controlled loading are presented. Under displacement-controlled loading, the model can
exhibit a transient response which takes it away from its initial configuration, but the
response eventually reaches a stable cycle. Under load-controlled loading, the model can
either reach a limit cycle or develop a limit load instability that causes collapse. The
responses that result in collapse are imperfection sensitive. In addition, the response of
the model is also sensitive to the amplitude of the applied loading cycles.
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Introduction of members under bending and hence is employed here. The in-

. . . vestigation consists of numerical experiments on the model for
Many metal structures currently in service are subjected to ¢ 9 p

clic loading. Examples include structures located in seismicalgglrt'guS geometries and loading conditions and analysis of the re-
active areas, offshore structures excited by wind and waves, strtc- "

tures subjected to cyclic thermal loading, etc. In some cases,
mostly under off-design conditions, the amplitude of the cycliEormulation
loading may cause repeated yielding of the material. It is well

known that, in those cases, structural degradation is possible MYmbers that deflect in the plane. The vertical men@arhas
can lead to buckling and collapse. Bertero and Pofjay pre- lengthL and connects to the horizontal memiB&€ of lengthb at

slgntﬁd lonz OJ thetglarllestt) demoant;atlo?sdpf Su}?{;} behavior in ént 0. OA andBC remain perpendicular at all times. Elastic-
Ctlct?'l'}t/ O"? et C?” |Iever ke)ams. daer S lf '?S %. € r7espk)]onse stic links of lengthh and unit cross-sectional area support the
stability of structural members under cyclic loadiig—7]) have s&ructure at point® andC.

shown tha}t structural degradation and collapse under cyclic loal %igure 1b) shows the model in its deflected configuration. The
affect a wide range of structural members. In many of these ca nt of application of the external loaN is at A. The line of
the cause of degradation is the progressive growth of the bucklgﬁion of N remains vertical at all times. The .model has two
mode, which eventually localizes and leads to collapse. Most 8glgrees-of-freedom: the vertical displacement of p@ir{u) and

Ejhe tSIUd'le?. ccl)nc:ug_ted thave tbeen expgrlmetntl?l. Attemptztg ﬁ?ﬁb rotation(6). The initial configuration can be imperfect. The
duct anaiytical studies 1o capture experimentally measured behgyi e fection consists of initial values afand 6 given byu, and
ior ([8,9]) have been successful in some cases, but only aftgr

/ L . o », respectively. For the range of parameters considered in this
overcoming S'Qn'f'c.af“ challenges in the area of constitutive mo vestigation,u and 6 remain relatively small, so an intermediate
eling. '_I'he main difficulty has _be_en the accurate _predlctlon Yass of kinematics is sufficient to capture the behavior of the
ratcheting under general, multiaxial loading conditions that a

; . Hodel.
present in many of the structural members studied, as shown ""rhe equilibrium equations of the model can be easily obtained
([10-13). In view of this state of affairs, one avenue to analyti q q y

cally explore the stability of structural members subjected to C)f/r_om the free-body diagram in Fig (tD. They are

clic loading is to consider the response of simplified models. F,+F,=N
The objective of the present work is to study the response of a
relatively simple structural model subjected to cyclic load or dis-
placement controlled loading in order to study the degradation and
collapse mechanism resulting from the growth in amplitude of the
buckling mode. The model considered was first proposed by
Shanley([13]) to study column plastic buckling and is shown in A
Fig. 1(a). All members are rigid, except for the elastic-plastic e
springs, or links, that support the model at poiBt&nd C. The
state of stress in the links is uniaxial. Due to the importance of
ratcheting in the calculated response, the cyclic plasticity model
employed has to have shown success in predicting ratcheting un-

he Shanley column, shown in Fig(a), consists of two rigid

= i . ; . L
der uniaxial stress. Such a model will be discussed in more detail
in the next section. The main concern of the investigation is the
stability of the model under fully reversed loading, and how it is
related to the geometric and loading parameters imposed. This -
. N . . _ | Bl~—b/2—
type of loading has been employed in several experimental studies o)
h
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G where EtP is the plastic tangent modulus. At a given point, say
G ///B ----------- point a in the figure,Ef is calculated based on the distana®s
A betweera and the bound and;, between the previous yield point
""""""" TR ) and the same bound. The plastic tangent modulus is given by
S
o, P_EP4
EI Eo Y 5in_5) (8)
where 7 controls the shape of the curve and is given by
~ t }P 5 a
o A N= 7 m ©)
| n
! +
- Lre ( zfrb)
¢ - If the stress-strain curve touches a bound, tBEr-EF . All pa-
18 o rameters of the model can be evaluated from two uniaxial stress-
P strain curves.
S 6// Hassan and Kyriakidegl0] introduced a modification to the
model by cutting the bounds at the poi#tsB, C, andD instead

of letting them extend to infinity as in the original model. If the
Fig. 2 Plasticity model parameters absolute value of the plastic strain exceeds the val{ﬁe the
pointsA, B, C, andD translate along the strain axis in the direc-
tion of the strain increment at the same rate as the plastic strain.
Using this modification, they showed that the model could accu-
F.—F,=2N E 0. 1) rately predict experimentally measured uniaxial ratcheting.
T2 b A simple plastic bifurcation analysis of the perfect system
The strain in each link is given by yields the bifurcation buckling load

e P D (10
=2, ="t ) ©= 72 (hil)
h h wherekE, is the instantaneous tangent modulus given by
where the bar indicates normalization with respect Ltgh 1 1 1
=h/L, etc.). Here, — ==+ —p. 11
ﬁlzﬁJrU_ i 0, ﬁz=ﬁ+j+ 3 6, (3) The negative sign indicates that the buckling load is compressive.
2L 2L If E, is not constant(10) must be solved by trial and error. The

andﬁlo anszO are the values oﬁl andﬁz due to the initial corresponding buckling mode is=0 and# arbitrary. .
imperfection. The horizontal and vertical deflections of point A The response of the column under load control can be obtained
are given by by prescribing the external load and then solving Eqg1)—(3)

L using Newton’s method. Alternatively, the response under dis-
Ua=U— 072, va=0, (4) placement control can be obtained by prescribing the displace-

respectively. It is clear that the model contains two geometrfB€NtUa . In this case, the first of E44) must also be included in
parametersh_and L/b. the §olutlon procedure. o

A second nonlinearity in the model is due to the constitutive Itis understood that this simple, two-degree-of-freedom model
relation of the links. It desirable to employ a plasticity model thafannot account for all aspects of t_he _measgred response of actual
has shown success in predicting uniaxial ratcheting in actual nﬁ[uctur.al members, such as |oca||;at|on-dr|ven collapse., collapse
terials. The Dafalias-Popov cyclic plasticity modEl4.15) gov- under displacement-controlled loading, and the degradation due to
erns the constitutive behavior of the links. This model is based Bﬁe%zcg'?ﬂ? (ijteform%tloni observed n C|r<|:ular tu?es_unc:etr bt(?]nd-
classical incremental plasticity with kinematic hardening. In th&'9 ot pl’O\{_It eds, ?‘ge"ﬁﬁ a S|mdp € Waé’ 0 swpu i’i ed' e
uniaxial setting, as applicable in this work, the basic characteri@oWih Of thé amplituce ot buckiing modes under cyclic foading

tics of the model can be explained with the help of the stresg-s has been observed, for example, in tubes of square cross sec-

plastic strain diagram in Fig. 2. As is customary, the strain incr jon ([6]) and T-beams{7]) under cyclic bending.

ment is decomposed into an elastic and a plastic part
de=de®+deP (5) Resultd
The investigation of the behavior of the model was carried out
do as a series of numerical experiments by varying the geometric and
dee:E (6) loading parameters. The material properties are those of carbon
steel 1026 used iff10]) and are listed in Table 1. These proper-
andE is Young’s Modulus. ties remained fixed in all cases presented here. Note that the yield
The stress-plastic strain response of the material is boundedd of the perfect model idly=2¢,. The corresponding dis-
between the two linesAB and CD, which are called the placement idiy=oyh/E.
“bounds.” In the simplest case, the bounds are linear with slope The results can be divided into three cases depending on the
Eg. The relation between the plastic strain increment and theading conditions: monotonic response, cyclic response under
stress increment is given by displacement control, and cyclic response under load control. In
do all cases considered=0.01, so the only geometric parameter

= EP (7)

where

deP -
Preliminary results of the response of the model were presentedjn
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Table 1 Material properties with lower L/b have a more severe plastic state at the limit load.
Figure 3b) shows the corresponding load-rotation curves. Note

E, GPa E{, GPa oy, MPa ¢,, MPa a, GPa b that the values of) at the limit load are all below 0.001 rad so that
(ks (ksi) (ksi) (ksi) ks) B m &.% the assumption of intermediate rotations is justified. Further
181 1.38 131 269 490 27 2 2.35 analysis indicated that, as expected, the limit loads and the corre-

(26,320 (200 (19 (39 (71,100 sponding displacements are moderately imperfection sensitive.

varied wasL/b. Three values ot./b (50, 100, and 150were Cyclic Loading: Displacement Control
chosen to illustrate the various aspects of the response of théJnder displacement control, the prescribed variable is the ver-

model. tical deflection of the tip of the colummy, in Fig. 1. The first case
to be discussed is that of a model withb=50 under symmetric
Monotonic Response loading about,=0 and with amplitudéi, /|u.,|=0.95 (T, indi-

Shanley developed his model to analytically demonstrate t
the critical load calculated based on the tangent modulus rep > .
sents the lowest load at which lateral deflection of a perfedfnperfectlon will be the default value for the rest of the paper,
elastic-plastic column becomes possible. Furthermore, he sho ss stated other\leg._'I_'he loading cycles start by compressing
that the load supported by the column increases through the cr € column. Note that, initially, the response goes through a tran-
cal point as the response follows the stable branch. slent stage where_th_e loops are shifting but eventual_ly_approaches

Table 2 lists the bifurcation loads and the corresponding axial repeata_ble, or I|m_|t, cycle. The reason for the th'ft'ng can be
displacements of the three models considered, as calculated u%ﬁeﬁn in Fig. 4b), which shows the\-6 response. It is clear that

gtes the amplitude of the cycle in,). Figure 4a) shows the
ﬁ_—ua response. The initial imperfection &,=10 “rad. This

Eq. (10). Both quantities are normalized by the corresponding'® M0del progressively leans so that the peak valugiofeach
yield quantities. It is clear that ds/b decreases, bifurcation oc-. cle INCreases. This causes ‘softenmg. Ih compression. Hardening
curs further into the plastic range of the materi:stl in tension develops from the increase in the width of the loops.

The post-buckling behavior of the model can be studied br}/] T.h's type O.f displacement contrplled loading imposes a kln_e-
introducing a small initial imperfection in the form of an initial atic constraint on the system Wh'Ch. keeps the lateral deflection
rotation 6, . Figure 3a) shows the load-axial deflectioN(-u,) 7O growing too large. As a result, it can be expected that the

responses calculated for the three value& tif considered with system will be stable in the long term even though the transient
an initial deflection ofd,=10* rad. The loads are normalized byresponse takes the system away from its unloaded configuration.

the absolute value of the bifurcation load,| while the deflec- The mechanics of how stability is achieved at the material level

X . . ._can be explained by looking at the stress-stfaift) response of
tions u, are normalized by the absolute value of the blfurcatlozae two elastic-plastic links in Figs.® and (b). As the lateral

deflections|ug|. In all cases the response is characterized by eflection increases, the model leans on link 1, hence it ratchets in
limit load instability. The limit loads occur at values df/|N,| ' '

—0.978, 0.957, and 0.928 fdr/b=50, 100, and 150, respec-the negative strain direction. Link 2 ratchets in the positive strain

. S direction. Note that the rate of ratcheting decreases with cycling in
tvely. _Note _that ad./b d_ecrease_s t.hN'Ua curves exhibit MOTe oth links. Ratcheting can be slowed d%wn in two manne);s: b%/ a
softening prior to reaﬁhmg the lml"t load. TE'S Is due to tlhe NYecrease of the mean stress or by a decrease in the amplitude of
crease inNe; /Ny as shown in Table 2. In other words, co UMN3he stress cycles. Itis clear that in link 1 the mean stress decreases
(in absolute valueduring the transient period, while in spring 2

Table 2 Brifurcation loads and displacements for three values the mean stress increases significantly, but the amplitude of the

of L/b considered cycles decreases very quickly simultaneously. The net effect is
that ratcheting stops after sufficient cycling. As a final detail, care-
L/b Ner /Ny Uy /uy ful consideration of the stress-strain loops reveals that the mean
stress in link 1 does not decrease all the way to zero when ratch-
50 —1.93 -3.16 . . . . .
100 158 _1s8a eting stops. This arrest of ratcheting with nonzero mean stress is a
150 —1.22 -1.25 characteristic of the Dafalias-Popov model. Should a different

plasticity model which requires zero mean stress to stop ratcheting

0.001 0.002

(=]

-1.2 -1.2
(@) (b}

Fig. 3 Monotonic response, (a) load-axial deflection response of three models, (b) cor-
responding load-rotation response
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@ (b}

Fig. 4 Cyclic response under symmetric displacement control for a model with
L/b=50, (a) load-axial deflection response, (b) corresponding load-rotation re-
sponse

be used, the mean stress in link 1 would have to decrease to zeauses link 1 to develop a larger strain at p@@t The strain
Similarly, link 2 stops ratcheting even though some plastic defodifference between the links is sufficient to overcome the initial
mation occurs in each cycle and the mean stress is relatively highperfection and accommodate the change of sigrd.din the
The effect of varying the amplitude of the loading cycle can bgase shown in Fig. 4 fdr/b=50 the stress-strain history is simi-

seen in the plot in Fig. 6. It shows the peak valu@¢f,) in each |ar o this point, but the difference between the strains in the links
cycle as a function of the number of cycles. As expected, the not sufficient to overcome the initial imperfection and the sign
response eventually stabilizes in all cases. The stable valég of ¢ y qoes not change. During reloading fro@ to (), link 2

and the rate at which it is approached depend on the amplitudeO%fveloloS much larger strain than link 1 and hence pushes the

the cycle. The higher the amplitude, the larger the stable value . . N ) .
the faster it is approached. The imperfection sensitivity of tﬁggdd further in the negative-direction. From this point ong

: : remains negative as shown in Figby.
response of the model was also studied by considedgg ; ST o
—10°5, 10°* and 10 3, The results indicate that, in this case Further investigation into cases witbb=50, 100, and 150,

; 5 104 3 ; ;
the stable value of), is relatively insensitive to the amplitude ofimperfections of 10°, 10"* and 10°*, and various cycle ampli-
the initial imperfection. tudes indicated that the transient responses of the models are var-

Figures Ta) and (b) show the load-axial deflection and load-€d. The long term behavior is_stable, but the long term values o_f
rotation plots for a model with_/b=100 loaded afti,/|u,| @ depend on the parameters listed above. In general, the behavior
=0.95. As in the previous case, the response approaches a ligfithe model becomes more predictable for lower valuek/bf
cycle. The load-axial deflection plot looks very similar to the ontarger initial imperfections and larger loading amplitudes. In these
in the previous case. Note that limit loads occur in the first fe@wases, the plastic state in the links is more severe, which more
several cycles, but they are inconsequential under displacemefiectively “locks” the deflection of the model in a more predict-
control. The load-rotation plot shows significant differences wheable direction.
compared to that in Fig. 4, the most obvious being that the sign of
0 in all loops is opposite to that df,. This reversal ind occurs
frequently in models with./b=100 and 150. The reason for the
reversal can be seen in Fig. 8, which shows the stress-strain his-
tories of both links for the first cycle. At the first reversal, indi-
cated by(D, link 1 has reached a higher value of stress and strain g, 00041 7, _59

than link 2, as expected. Upon unloading and reverse loading, link o= 10"
1 yields before link 2 due to the Bauschinger effect and softens g,/ |u, =110
significantly more during the rest of this cycle segment. This
0.003 | 0.95
- o 40
LR

(4
i/ |ue] = 0.95 T

40
G
I (ksi) / 0.80
0.002
j 0.65
0.2 0.4 -0.2 ““““‘“‘ . 0.001
— £ (%) 8y € (%)
PLib=50

8= 10" 0.000 -
o/ | e = 0.95 o 100 200 300

40 -40 —— Number of Cycles
(a) (b}

Fig. 6 Peak values of @ in each cycle as a function of cycle
Fig. 5 Stress-strain response for the case in Fig. 4, (a) link 1, number for various cycle amplitudes under displacement
(b) link 2 control
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Fig. 7 Cyclic response under symmetric displacement control for a model with

L/b=100, (a) load-axial deflection response,

sponse
4 -
L/b=100 (kc,) 0
0,= 10" sl
T/ | ter] = 0.95 T @

-401

Fig. 8 Stress-strain histories for the first cycle of the response
shown in Fig. 7

Cyclic Loading: Load Control

(b) corresponding load-rotation re-

smaller than the limit loads presented in Fig. 3, in contrast with
displacement control where the amplitude of the cycle could be
larger than the displacement corresponding to the limit load under
monotonic loading. In parallel with the discussion of displacement
controlled loading, the first case considered is one where signifi-
cant plastic deformation takes place.

Figure 9 shows the response of a model wittb=50 with a
load amplitudeN/|N,,|=0.8. TheN-u response, shown in Fig.
9(a) is significantly different from the one obtained under dis-
placement control. In this case the loops change slowly at the start
but progressively ratchet in the compressive direction. The ratch-
eting accelerates as cycling progresses and becomes relatively fast
for the last few cycles. Th&l— 6 response, shown in Fig.(19,
shows that ratcheting ifl is also present. In fact, a small amount
of the deflectioru, is due to the leaning of the model. Ratcheting
in 0 also starts at a slow rate and accelerates throughout the load-
ing history, moving away frond, . Also, note that the instanta-
neous stiffness of the model at the compressive load reversal point
decreases with cycling. The calculations stop when the solution
procedure diverges as the model approaches a limit load instabil-
ity during the last cycle. At this point the model can no longer
support the load required by the loading history, and it collapses.

The model exhibits two possible instabilities. The first, which is
also present in the displacement controlled case in Fig. 4 is the

The second mode of cyclic loading considered is load contraeparture of the configuration of the model away from the initial
whereN is the prescribed variable. As in the case of displacemenihe. The speed of departure, however, is significantly different.
control, the cycles considered are symmetric abd&t0. The Under displacement control, the departure is initially fast and pro-

amplitude of the cycles, denoted hy, necessarily has to be gressively slows down until it stops. Under load control, the de-

L/b=50
8,= 10
N,/ |Ny| = 0.8

Fig. 9 Cyclic response under symmetric load control for a model with
(b) corresponding load-rotation response

load-axial deflection response,
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— (%) 08
-0.8 -
L/b=50 NN
o= 10"
Ko/ | Nyl =08 09 \\084
-40 .
085 0.83
(a) (b) -1.0
a
Fig. 10 Stress-strain response under symmetric load control 0.0015 @
for the case in Fig. 9, (a) link 1, (b) link 2 0p L/b= 1400
I 8,= 107
L . 0.83
parture is initially slow and progressively accelerates. The second 0.00100.85 g g4
instability is due to the fact that, under load control, the kinematic y
constraint present in the displacement control case does not exist. / .
Therefore, bothu and  may attain relatively large values leading NIINA
to the collapse of the model. 0.0005
Figure 10 shows the-e response of the two links for the case )
shown in Fig. 9. As cycling progresses, the model leans on link 1
(Fig. 10a)) and hence it ratchets in the compressive direction. 0,82 080 2,-70
Note that both the stress amplitude and the absolute value of the &
mean stress increase with cycling. These increases have the effect 0.0000, 100 200 300

— Number of Cycles

y 002 100 200 300 400
[ teer L/b =50
T 9,=10*
0.5 X
101 o8
0.77
15 ~
N,/ |N,|=0.74
2.0
@)
0, 00041 1 /=50
B,= 10 I _
a |Ncr| =074
0.003
0.77
0.002} 0.8
0.001
0.000, 100 200 300 400

— Number of Cycles

()

Fig. 11 Response history under load control for a model with

L/b=50 for different load amplitudes,

cal displacement in each cycle as function of cycle number,

(a) peak values of verti-

(b)

peak values of @ in each cycle as function of cycle number

Journal of Applied Mechanics

——— Number of Cycles

(b)

Fig. 12 Response history under load control for a model with
L/b=100 for different load amplitudes, (a) peak values of ver-
tical displacement in each cycle as function of cycle number,

(b) peak values of @ in each cycle as function of cycle number

of accelerating ratcheting in this link. The response of link 2,
shown in Fig. 10b), exhibits a more moderate response within a
smaller strain range.

The peak values af, and ¢ in each cycle, shown in Fig. 11 as
a function of number of cycles, indicate that ldsdecreases the
initial rates of accumulation ofi, and # decrease and that the
number of cycles required to induce the limit load instability in-
creases. Note that the rangeNfvhich could lead to instability is
bounded by the limit load above and approximately by the yield
load of the perfect model below. In this case, G:52<0.978.
Therefore, the amplitude range presented in the figure is rather
small, yet the number of cycles required to induce the limit load
span one order of magnitude. This indicates that cycle count at the
limit load instability is very sensitive to the amplitude of the load
cycle. Indeed, forN/|N,,|=0.65 the limit load occurs at 2.7
X 10* cycles.

Figure 12 shows peak values of and @ in each cycle for a
model withL/b=100. The cases considered here show a remark-
able difference when compared with the cases in Fig. 11. The
three cases with highét/|N,,| develop a limit load instability as
discussed previously. The three cases with loW&N,,| do not.

The difference can be attributed to the material nonlinearity asso-
ciated with the Bauschinger effect along the lines of the discus-
sion of the case in Fig. 8. For the cases with IoWg[N,,|, the
responses tend to limit cycles. This was verified by carrying the
calculations to a much higher number of cycles than shown in the
figure. For example, Fig. 13 shows plots of the peak values, of
and 6 in each half-cycle for a range of 4000 cycles when
N/|Ng|=0.7. It is clear that while the range of, in each cycle
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0.003 8, L/b =50
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O — T ]
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" — Number of Cycles
rd (@)
o, 2.0
T 0.0010 L/b =100
: i . ' N/|NJ=082
Fig. 13 Response in terms of peak values of v and @ in each
half-cycle for a model with  L/b=100 and N/|N.|=0.70 under
load control
0.0005
remains nearly constant, the range #flecreases continuously o, x1d"
until the 2110th cycle. At this point the loop flips and, by the 10 s
2150th cycle, all values of in the cycle are negative. The range ‘ 0.1
of 6 subsequently increases but now the cycles approach a station-

ary condition.

— Number of Cycles

4] 50 100 150 200
u, -0.80
(] L/b =150
0,= 10"
0.85
¥/
-0.85
0.90
0.92
-0.90 f 0.925
-0.95
(a)
g 0.0008
P L/b=150
9,=10
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0.0002
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— Number of Cycles
-0.0002

(b)

Fig. 14 Response history under load control for a model with
L/b=150 for different load amplitudes, (a) peak values of ver-
tical displacement in each cycle as function of cycle number,
(b) peak values of @ in each cycle as function of cycle number
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0'00000 100 200 300

— Number of Cycles
(b)

Fig. 15 Response history in terms of peak @ values as func-
tion of cycle number under load control for different values of
initial imperfection, (a) L/b=50, (b) L/b=100

Figure 14 shows peak values of and # in each cycle for a
model withL/b=150. The range of possible valuesifis most
restricted in this case because, for the perfect model, yielding
occurs only forN/\Nc,\>O.82. The plots in the figures show that
the responses in all cases considered did not march toward limit
load instabilities. Therefore, the responses were stable in the long
term.

Imperfection sensitivity is another important aspect of the re-
sponse of the model when under load control. Figur@)1$hows
plots of #, versus number of cycles for three values dyf one
order of magnitude apart. In these caseg®=50 andN/|N,]|
=0.77. Itis clear that the rate of accumulationéyfand number
of cycles to collapse are sensitive to the initial imperfection. Fur-
ther analysis indicates that the number of cycles to collapse con-
tinues to increase as the imperfection amplitude decreases. This
trend continued down to amplitudes of 6. The number of
cycles to collapse became a random variable for smaller imper-
fections but never exceeded 2000 cycles. This effect is most likely
due to numerical effects that surface when the imperfection is
very small. It, however, may indicate that for given material, geo-
metric and loading conditions, a maximum possible number of
cycles to collapse exists due to unavoidable perturbations.

Figure 18b) shows similar plots for a model with/b=100
andN/|N,|=0.82. The value ol was chosen to be close to the
boundary between long-term stable and unstable responses in Fig.
12. The results indicate that the initial imperfection can also have
an effect deciding whether cycling will drive the model to a limit
cycle or to collapse.
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Conclusions loading. The results from the simple model presented here dem-

This paper discussed the elastic-plastic stability of the Sham%}strate that the combination of geometric nonlinearities and
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either displacement or load control. The model can exhibit tWOerved experimentall
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Modal Analysis of Ballooning

R. Fan . .
seeacsowi | SErings With Small Gurvature
S. K. Singh
Graduate Student During the manufacture and transport of textile products, yarns are rotated at high speed.
The surface of revolution generated by the rotating yarn is called a balloon. The dynamic
C. D. Rahn response of the balloon to varying rotation speed, boundary excitation, and aerodynamic
Associate Professor, disturbances affects the quality of the associated textile product. Resonance, in particular,
Mem. ASME can cause large tension variations that reduce product quality and may cause yarn break-
age. In this paper, the natural frequencies and mode shapes of a single loop balloon are
Department of Mechanical and Nuclear calculated to predict resonance. The three-dimensional nonlinear equations of motion are
Engineering, simplified under assumptions of small displacement and quasi-static axial motion. After
The Pennsylvania State University, linearization, Galerkin’s method is used to calculate the mode shapes and natural fre-
University Park, PA 16802 quencies. Experimental measurements of the steady-state balloon shape and the first two
natural frequencies and mode shapes are compared with theoretical predictions.
[DOI: 10.1115/1.1355776
Introduction that have been experimentally shown to be accurate for cable

analysis([11]). Axial vibration is assumed to propagate instanta-

Textile processes such as spinning, twisting, and unwindi : o . : .
involve the rotation of yarns at high speed. To an inertial Orll_%ously(Le,, quasistatically([12]). Finally, the equations are lin

3 . rized and Galerkin’'s method is used to calculate mode shapes
server, the rotating string blurs to produce a balloon or surfacel{{ﬁ1 b

lution f d by th . Relali f h d natural frequencies. Experimental measurements of the
revolution formed by the rotating yarn. Relative to a frame thale,qy._state balloon shape and the first two natural frequencies

rotates with the string, a steady balloon is stationary. For thg\q mode shapes are compared with theoretical predictions.
heavy yarns with negligible air drag studied in this research, the

steady yarn displacement resembles a planar catenary relative_to fi f Mot
the rotating frame. The dynamic response of the balloon to va%—qua lons ot Motion

ing rotation speed, boundary excitation, and disturbances governggnlinear Equations. Figure 1 shows a schematic diagram
the quality of the textile product. In unwindir(l]), for example, of the ballooning string system. The string is modeled as a per-
the yarn rotates around a stationary package as it is axially wilgctly flexible one-dimensional continuum pinned at the top and
drawn. The back and forth boundary motion of the yarn on thgtached to an eyelet of lengEhat the bottom. The bottom eyelet
package causes varying balloon rotation spgéd), introducing is separated by perpendicular distatérom the top eyelet and
both axial and transverse disturbances. Resonance can cause lgj@ges with angular velocit§2. The unstressed, steady-state, and
tension variations that reduce product quality and may cause yggiy| configurations are given by°, x', andyf, respectively. The
breakage. ) ) ) ~ rotation speed and yarn mass per unit lengthare assumed to be
Recent studies on ballooning strings have shown a variety @ffficiently large so that gravitational and aerodynamic forces can
interesting dynamic behaviors. The numerical studies by Bats@ neglected, respectively.
et al.[3] and Frasef4] and theoretical and experimental studies The steady-state displacem&i{S,T) =R, e, + R,e, locatesy’
by Zhu et al[5] show balloons can have multiple shapes for fixegihere S is the arc length coordinate measured along the steady
parameters due to the highly nonlinear governing equations. Té@te configuration and;, e,, ande; are Cartesian coordinates
linear vibration analysis by Zhu et 4b] captures the experimen- rotating aboute, with angular velocity(). The relative displace-

tally observed jump phenomena and flutter instabilities of lighinent between the final configuratigri located byRf(S,T) and
weight yarns with significant air drag. The number of loops in thghe steady-state configuration is

balloon shape increases with increasing string length or decreas- ¢ o
ing tension. Linear dynamic investigations by Zhu et[&]. and U(S,T)=R'=R'=U4l;+ Uslp+ Usl3, 1)
Stump et al[6] show that single loop balloons are stable, one angherel, , I,, andl; are the unit tangential, normal, and binomial
a half loop balloons are divergent unstable, and double loop bgkctors, respectively.
loons may be flutter unstable for sufficiently low air drag. Zhu Following Zhu et al[5], we obtain the nonlinear strain
et al.[7] also show string extensibility has limited effect on bal-
loon stability for most textile yarns. The limit cycling of double
loop balloons is studied analytically and numerically by Zhu et al.
[8] and Clark et al[9], respectively.

In this paper, the natural frequencies and mode shapes of a —UyU; 9 +U s KUy, 2

single loop balloon are calculated to predict resonance. The thrggierek = [R? o+ R% ¢ is the steady-state curvature and comma
dimensional nonllngar equations of motion are simplified Vigubscripts indicate bartial differentiation. Note that E2). ne-
small steady-state displacement and vibration assumpti®o}, glects the strain between the initial and steady-state configura-

tions. This inextensibility assumption implies

1 1
e=5(Ulgt Uit USg)+ S KHUT+UZ)+K(U1Uss
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P
U=uL, S=slL, T=¢t, Ry=r,L, H=hL, p:P_‘
°(8)

\/pALz Q EA  bodl, k=X
b= p . «0=Q¢, )\*P—e, =dL, =T

e

where P.=P(0). Substitution of Eq.(8) into Eqgs.(4)—(6) pro-
duces

Uyt 2BwUz— 02U+ Bro— aBuy) —[(p+Ae)(1+uyg
—KUp)] o+ K(p+Ne) (U kuy) =0 ©

Upp— 2wz~ w*(a’Uy—ar,—aBuy) —[(pP+Ne)(Uzs
+Kkup)] st k(p+Ae)(1+uys—kuy)=0 (20)
H Ugy— 20(BUg— alpy) — 0’Uz—[(P+Ne)Use] =0 (11)
The boundary conditions Eqé7) become
u(ot)=u(1t)=0,
r,(0)=0, ry(1)=d. (12)

The straine has the same form as E() with lowercase letters.
Ordering of the system variables as follows:

Ul:€2ul, U2:€UZ, U3:EU3, k:Ek, (13)
wheree is a small parameter, produces the simplified strain equa-
tion

_ 1 2 2\ _ 4
e=Upqgt 2(uzysﬂ—ugys) ku,+O(€e). 14)
Q¢
Tension sensor
Fig. 1 Schematic diagram of a ballooning string system

pAU 11+ 2pABOU; 71— pAQ*(B*U; + BRy— afU,)

—[(P+EA&)(1+U;5—KU;)] s

+K(P+EAg)(Up,stKU;)=0 4) Guide eyelet
pAU, 11— 2pAaQU;z1— pAQ?(a?U,— aRy— afU;)

—[(P+EAg)(UystKUy)] s

pAU3 71— 2pAQ(BU 11— aUy7) — pAQ?Us;

—[(P+EAe)(Uszg] s=0 (6)
whereP(S) andEA are the string steady-state tension and longi- Drive link

tudinal stiffness, respectively. The direction cosines-e;-|;
=dR;/dSandB=¢e,-1;=dR,/dS. The boundary conditions are

R(0)=0, Ry(L)=H, RyL)=D, %

u(0,T)=0, U(L,T)=0,

whereH is the balloon height.
To simplify the analysis, the following nondimensional vari-
ables are introduced: Fig. 2 Experimental setup
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Fig. 3 The dependence on the nondimensional rotation speed

height h and eyelet length d. Theoretical solid
=0.1) curves and experimental data

Assumingu, is O(e?) agrees with the inextensibility assumption

Eq. (3). The remaining variables are ordered,
B=€pB, A=M\e.
Substitution of Eqs(13) and(15) in Egs.(9)—(11) produces

I’2=EI’2, a=1,

(*) are shown.

(15)

w on the nondimensional balloon

(d=0.01), dashed (d=0.038) and dash-dotted (d

dw? sinws
k(s)= ——
sinw
In this paper, only single loop balloons with<# are studied,
ensuringk>0.

The balloon height is related to the steady-state displacement

[p+Ae]=0+0(€?) (16)  using inextensibility Eq(3) as follows:
U2,tt_2wU3,t+wz(rz—uz)_[(p"‘)\E)Uz,s],s_hk&‘_kp 1 1 1
_ — 2 dee _ .2 4
—0+0(&d) a7 h fo V1-r5ds fo(l > rz,s)ds+0(e ). (23)
Uggi 20Uy~ 0?Ug—[(P+Ae)Uss] =0+0(e%).  (18) substitution of Eq(22) into Eq. (23) yields
We have assumed that both the steady-state and relative displace- 42
ments are small. This produces the simple form of &6) and h=1— w_ (005w+ _) (24)
subsequent quasi-static eliminationwof(s,t). 4 sinw sSinw

Steady-State Equations. Solutions of Egs.(16)—(18) de-

Equation(24) shows that changing while keepingH, L, andD

pends on the steady-state tensmreurvaturek, and displacement fixed does not change. The steady-state tensid?, increases

r,. The steady-state equations result from substitution,ef u,
=uz=¢&=0 in the field Eqs(16)—(17) to produce

ps=0
w?r,—kp=0.

(19)
(20)

Integration of Eq.(19) yields p=1. Substitution ofk=r,¢s

(riss=a,s=0) in Eq.(20) produces
r2’33+ w2r2=0 (21)

with a solution satisfying the boundary conditiofi®) as follows:

dsinws
Sinw

ray(s)=
(22)

334 / Vol. 68, MARCH 2001

quadratically with speed to make constant. In the experiments,
we changew by changingH while maintainingL, D, and() con-
stant.

Quasi-static Equations of Vibration. After subtraction of
the steady-state solution from E@.6), we have
e s=0.

(25)

Thus, vibration in the axial direction is neglected under the as-
sumption that the yarn stretches imgaasi-staticmanner([12]).
Integration of Eq(25) and substitution into Eq14) yields

(B —Ku,= 26
8—2(U2,5+U3,s)+U1,s U,=9(1), (26)

Transactions of the ASME
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Fig. 4 Theoretical (dash-dotted and experimental data  (*) and best fit line (solid ) steady-state in-
plane displacement: (a) @=0.67r, d=0.038, y=400; (b) @=0.97, d=0.038, y=400. Experimental
data correspond to circled points in Fig. 3.

whereg(t) is an arbitrary function of time. Integration and use othat satisfy the pinned boundary conditions. Substitution of Egs.
the boundary condition&l2) give (33) and(34) into Egs.(31) and(32) and application of Galerkin’s
s method provide the discretized equation of motion
Uy(s,t)= J
0

ds+g(t)s, (27) a+Ga+Ka=0 (35)
where the coordinate vector
! 1 2 2
g(t)=f E(u2’5+ usg) —Kup
0

1
ku,— > (u3s+uds)

where
_ T
a=[ay .. @y g .- Azl -

ds=¢(t). (28)  The stiffness matriK =K+ K, with

_qNitjon 2y 42,4
Substitution of Eq(28) into Egs.(17)—(18) and elimination of the _ Kio O C Kygij)= (2 1)_ 3” ”Zhd_“’ -,
steady-state terms produces 0 o0 [o°=(im) ][0 —=(jm)]
Up— 20Uz — 02Uy — NKe — Uy 1+Ne) =0 (29) diag{(i 7)?} — 0l 0 } 36)
= L , 6
Usgi— 20U — Ugw?—Uged 1+ Ae)=0. (30) 2 0 diag{(i )%} — I
Canceling nonlinear terms in EqR9) yields the linearized equa- and the gyroscopic matrix
tions 0 —20l
1 G= 20l 0 37)
uzvn—Zwu&[— (1)2U2+)\kf kUZdS_ Uzysszo (31) w
0 The eigenvaluek , of the state matrix associated with Equation
Uggpt 20U, — 02Uz — Uz 6= 0. (32) (39
Modal Analysis. Galerkin's method is used for numerical A= B I (38)
balloon vibration analysis. The displacements are represented by -K -G
term separable series of the form are determined numerically using MATLAB.
n
Uy(s,t)= 2 agi(t)sin(i s) (33) Experiments
n Experimental Setup. The experimental setup is shown in
Us(Sqt)ZE agi(t)sin(j7s) (34) Fig. 2. The string attaches between a rotating eyelet on a four-bar
= linkage ©=0.0139 m) and an inductive tension sensor mounted
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Fig. 5 Theoretical (solid) and experimental (*) natural frequencies (d=0.038, y=400). Mode
shapes (1st solid, 2nd dash-dotted, 3rd dashed ): (a) ®=0.3w, (b) ®=0.67, (¢) @=0.97.
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Fig. 6 Theoretical (dash-dotted ) and experimental (solid ) mode shapes (w=0.97, d=0.038,
y=400): (a) first mode in-plane, (b) second mode in-plane, (c) first mode out-of-plane, (d)
second mode out-of-plane. Experimental mode shapes correspond to the circled points in Fig.

5.
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above an upper eyelet. The four-bar linkage is driven by a P@=0.37 shown in Fig. 5a) have identical in-plane and out-of-
controlled permanent magnet DC motor so that the eyelet in theane amplitudes, indicating circular whirling. Above= 0.4z
rotating link undergoes the desired circular motion. An axiallyhe curvature begins to become significant and the stiffening inte-
stiff (EA=237N) three strand continuous filament polyestegral term in Eq(31) increases the frequency of modes that are not
string with linear densitypA=0.001 kg/m is used. The nominal orthogonal tok(s). As k(s) is approximately a half-sine, the first
string length and steady-state tension are 0.376 m and 0.091tho modes are most affected by increasing curvature. The other
respectively. The nondimensional parameker 2604 is large, modes, being essentially sinusoids with spatial wavelengths equal
justifying the quasi-static assumption. Steady-state and mode-integral divisors of the first mode wavelength, are orthogonal to
shape displacement measurements are generated using a stkg¥e and are not as sensitive to increasing curvature. At
and a digital camera. A small sinusoidal variation of the rotatioa 0.6 (Fig. 5(b)), the first forward whirling mode and the second
speed excites vibration and allows determination of the natutgdckward whirling mode exchange order due to an eigenvalue
frequencies and mode shapes. The sinusoidal input sweepsve veering neaw=0.57. The first backward whirling mode
through a frequency range and the tension output is monitoredfiequency increases slightly from=0.57 to w=0.77 due to
determine peak vibration amplitudégsonances curvature stiffening that reduces the in-plane modal amplitude,
producing elliptical whirling. Atw=0.97 (Fig. 5(c)), the first

peﬁ)r;p:rzltger:ftjzlj\tiissuhlli[;. bFeItgx;r? th:]oets ggié?rﬁg:]?;gﬁ:i?ngtzﬁg)ﬁckward whirling mode is almost entirely confined to the out-of-
speedw and the nondimensional balloon heightand eyelet plane with the small in-plane component having a full sine shape.

. The first forward whirling mode has veered up off the graph. The
lengthd. The theoretical curves come from EQ4). The theory : ; o
and experiment show that decreases with increasitgand/ord. second and third modes are the second and third backward whirl

i - . ing modes, respectively. Ab=, the first backward whirling
Figure 4 compares the th_eore_tlcal_ and exper_lmgntal ballo I"?Jde buckles and the first forward whirling mode veers to infin-
shapes for the two circled points in Fig. 3. Best fit lines throug

the experimental data are also shown. The results agree to Witl:% The other forward and backward whirling modes change by

one percnt for the smallradiusballoon i Fig corespon. 7O DET VLSS CO tesperthe.
ing to a smallw=0.67r, and from Fig. 3, a largh=0.99. Largeh P y q !

implies that the balloon is stretched taut because the heightp%JttGd as asterls_ks on Fig. 5, match the theory curves to within 13
almost equal to the string length. For larger(smaller h), the pércent for the first mode and four percent for the second mode.

balloon displacement is larger as shown in Fign)4Reduction of Above w=.97m, the balloon becomes too large and tends to col-

. lapse into a double balloon or flutter. Thus the theory is reason-
h<0.7 causes the balloon to collapse or flutter chaotically due ﬁltfly accurate fow<.977 or r,<0.4. Beloww=0.5x, the bal-

the system nonllnegrltle_s. . Iood1 is too taut for mode shape measurement. Figure 6 shows the
Several assumptions increase the difference between theorygg

experiment to seven percent for the large-amplitude displacem ?oretlcal and experimental mode shapes for the first two modes

. . . . ®=.97 in reasonably good agreement. Note that the first mode
case(Fig. Ab). First, the relatively low speed of the experimentajg shaped like a half-sine out-of-plane and small-amplitude full-

tests(635 rpm means that gravity loading is significant. Figure_. ~ . .

4(b) clearly shows gravity pulling the steady-state shape dowRt'€ in-plane as predicted by the theory.
ward relative to the theoretical prediction. Second, air drag in the

experiment pushes the balloon slightly out-of-plane. Finally, the )

large-amplitude experimental results are influence by nonlineég@nclusions

effects. ) ) ) ) The calculated natural frequencies and mode shapes from the
_Figure 4 also explains why varies withh andd as shown in - sma|| sag R,<0.4L), quasi-static P.<EA), single loop

Fig. 3. Ash increases, the balloon becomes taut and the steay%\/mzzﬂ ) balloon model match the experimental re-

state tension increases. The nondimensional rotation speed issinl'ts O\E/er a broaocl range of speeds. The first backward whirling

versely related to steady-state tension and therefore decreaSes_ ode buckles at the critical speeﬁl;ﬂc. The first forward

increases dramatically, the balloon also becomes taut, increasf)jing mode is sensitive to balloon curvature and veers upward

steady-state tension and decreasing ; I . -
. . in frequency with increasingn. The remaining modes start at
Three nondimensional parametégis), andew) govern the sys- w,=nm and change approximately linearly asincreases with

tem response. In the experimen;, the length, height, .a.nd rotatg pes of*qr for forward and backward whirling modes, respec-
speed of the balloon can be easily controlled. Maintaining a co Nely ’

stant balloon length while changing the balloon height ensures
thatd remains constant. The nondimensional variable
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Editorial Department.

A New Lagrangian and a New 2 A New Lagrangian and a New Lagrange Equation of

Lagrange Equation of Motion Motion _
This section presents a new Lagrangian and a new Lagrange

for FraCtiOna”y Damped SyStemS equation of motion for a fractionally damped system. There are

several definitions of a fractional derivative. Here a fractional de-
rivative is defined in the Riemann-Liouville sengd]):

O. P. Agrawal
Professor, Mechanical Engineering and Energy Processes, e A 1 d [tx(t—u)
Southern lllinois University, Carbondale, IL 62901 DX(U= g = F(1-a)dt), u® .
t>0, O<a<l. 1)

) This definition can be extended far>1. Herex(t) represents a
1 Introduction state space coordinate of the dynamical system. The Lagrangian

All dynamic systems exhibit some degree of internal dampingnd the Lagrange equation of motion are given as
Recent investigations have shown that a fractional derivative L Tan . L1.T T
model provides a better representation of the internal damping of L=v1(a)3(D“y) MD*y—3y Ky+Q'y, 2
a material than an ordinary derivative model does. For a survey of
fractional damping models and their applications to engineeril"f‘l‘f]1d
systems, the readers are referred to Rossikhin and Shitijkidva
and the references therein. Traditionally, the Newton’s law is used
to model such nonconservative systems, and when a Lagrangian,
Hamiltonian, variational, or other energy-based approach is us%

odr AL aL_o 3
g D)y ©

. - . ? . erey is a state vectorM and K are the mass-like and the
it is modified so that ,the resulting equations match those obtainggke << e matricesy, () is a a-dependent coefficient, ar@
using the Newtonian’s approach.

. is a vector of generalized forces. The purpose i) is to make
Several attempts have been made to include nonconsevawg formylation consistent with the variationdbr Euler-

forces in the Lagrangian and the Hamiltonian mechanics. RieWg,range anoroach 2.3]). Sincev,(a) does not appear in the
[2,3] presented a succinct survey of research in this area. He a&ﬂ%atio%i opfpmotior(1[, it ]v)vill not bé(in)cluded, and ﬁg expression
pointed out that a term proportional @'x/dt" in the Euler- il not be given herdfor its expression se®,3]). The Lagrang-
Lagrange equation follows from a Lagrangian with a term propofan L defined in Eq(2) is applicable for positive rationat only.
tional to (d"2x/dt"?)2. Hence, a frictional force of the form The dimensions of, M, andK depend on the denominator part of
c(dx/dt) may follow directly from a Lagrangian containing a«. Therefore, in this settind, cannot be developed for irrational
term of the form (¥/dt/?)2. Using this as the starting point, hee. MatricesM and K are not the traditional mass and stiffness
developed a new approach to mechanics that allows nonconseiviatrices. It will be seen tha¥l may contain the mass and the
tive terms(both ordinary and fractional dampingp be included damping, and may contain the mass, the damping, and the stiff-
in Lagrangians and Hamiltonians. This paper presents anotti@ss. In the case of zero dampigandK reduce to the mass and
form of a Lagrangian and the Lagrange equation that can be udbg stiffness matrices. It is assumed that, for the functions consid-
to obtain equations of motion of systems whose damping forcg&ed here, the composition rule applies. _ _

are proportional to a fractional derivative of ordgn. With a  Substituting Eq(2) into Eq.(3), we get the equation of motion
minor change in the formulation, the resulting equations can B

t(l[wzo%]g)ht of as a state space representation of Riewe’s formulation MD2ey+Ky=Q. @

To generatd., we needy, y, M, K, andQ. « is half of the lowest

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF common fractional derivative order. Thus. for a force of the form
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Journal of Applied Mechanics Copyright © 2001 by ASME MARCH 2001, Vol. 68 / 339



state vectory are defined asy;=D?%y;,;=Dy;,;, (i 0 0 0 0 -m O
=1,...]-1), andy,=x(t), wherel=2n is the dimension of 0 0 -m 0 o0
the vector. _
Now consider thamD?x, cD/'"x, andkx represent the inertia, 0 -m 0 -c 0
the damping, and the spring forces, wherec, andk are, respec- Ko= 0 “m o0 —c ol
tively, the mass, the damping coefficient, and the stiffness of the
system. In this caseyl andK are given as -m 0 -—-c¢c O 0
0 - 0 -+ m | 0 0 0 0 0 k|
: ' : L=3(D") MDYy~ 2yTKyy,
M = 0 e m e c , d1/6 JL JL
o d® DY) ay
m -+ ¢ - 0 These terms givév,D¥3y+K,y=0, which is equivalent tanx
"0 e i 0 —m O] +cD*3+kx=0.
Note thatM may contairm andc, andK may containm, ¢, and
k. Also, note that in the examplescan be set to zero to obtain the
: . . - ¢ differential equations of motion of an undamped system in a
K=l = ' ’ . (5) higher dimension. Similarlye in Example 1 can be set to 1/4 to
o obtain the differential equations of motion of a damped system in
-m . —c¢ o0 0 a higher dimension. However, such increase in dimensions adds
no benefit. Further, as the order of the fractional derivatwve
Lo o0 0 - 0 K] moves from 1 towards (L towards 2 the damper behaves like a

In matrix M the off-diagonal containsand thejth off-diagonal SPring(mass. )
measured from the bottom right corner containtr matrix K the Several techniques have been developed to solve the resulting

bottom right corner containg, the elements left to the off- S€t of fractional differential equations. Suarez and ShoKagh
diagonal contain-m, and all except the first and the last elementBrésented an eigenvector expansion method to solve these differ-
of the (j + 1)th off-diagonal measured from the bottom right coréntial equations. Other methods to solve these fractional differen-
ner contains—c. Note thatM andK are symmetric. Structure of tial equations include, for example, Laplace transform and direct

these matrices will be explained further using two examples. ggchniques similar to the techniques for ordinary differential equa-
nally, vectorQ is given as tions ([6—8]), and the numerical techniqué®]).

Q=[0,--,0F] (6) 3 Additional Remarks
whereF is the generalized force. _ _ Riewe[2,3] developed a new approach to mechanics with frac-
The Lagrangians and the Lagrange equations of motion for twi@nal derivatives that includes the nonconservative Hamiltonian,
fractionally damped systems are given below. Canonical transformations and the Jacobi theory. The approach
Example 1 Damping force= cx. _ can also be used to develop similar Hamiltonians and the Hamil-
For this system.a=1/2. Vectory, matricesM=M; and K  ton equations. To this end, we propose the following Hamiltonian
=K, the Lagrangiarl, and the Lagrange equation are and Hamilton equations for fractional systems.
y=[y1 y2I'=[x xI, H=(D"y)Tp—L=(D"y)"p—3(Dy)'MDy+3y'Ky,
0 m -m 0 aH 9H
M —_ = —_ & —_ (23
el 1 0 kI’ 0 D¢, and 2y D“p,
L=3DYy)™™ DYy —2y"K,y, wherep=MD*“y. It can be shown that the above equations lead
1 to the correct equation of motion. Using these equations, the
d aL aL Hamiltonian can also be written as

T2 RN Ty = 0

ATy oy ) H=3D%p)"M1Dp+3y'Ky,

Ihce;f ktff(])s giveM;Dy+K,y=0, which is equivalent tanx which is similar to the total energy term for a conservative system.
Example 2 Damping force=cD*3x.
This example shows the locations@ivhenj in the force term Acknowledgment
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of nonlinear failure loci on the meridian plane while the Mohr-
On the Unification of Yield Criteria Coulomb does not. The Matsuoka and Lade are failure theories
for soil (sand. They account for both the SD effect and the non-
linear failure loci on the meridian plane.
S. C. Fan Unfortunately, recent research revealed that those theories do

Associate Professor. School of Civil & Structural not necessarily represent the real failure/yield of materials under

Enai - N Technoloaical Uni itv N complex stress state. One prominent feature has been ignored, i.e.,
ngineering, Nanyang 1echnological University, Nanyang,q effect of the intermediate principal stress,). The Tresca

Avenue, Singapore 639798 and its derivatives ignore this effect whereas the Mises and its
derivatives average the effects of all the three principal stresses
M.-H. Yu o1,0,,03. Experiments show that the, effect varies from case

" . . . 5 . rial type and the stress state.
Xran Jiaotong University, Xi'an 710049, China The second category of yield criteria may be called curve-

fitting multiparameter criteria such as the Argyris-Gudehus-

S.-Y. Yang Zienkiewicz criterion, the Willam-Warnke criterion, and some
Post Doctoral Fellow, School of Civil & Structural smooth modelg[1]). These criteria usually have complex math-
Engineering, Nanyang Technological University, Nanyangmatical expressions because simple expressions usually cannot
Avenue, Singapore 639798 reflect the diversity of test results. The main advantage is that they

’ can simulate accurately the yield properties in the particular range
of complex stress state where most tests are conducted. Another
deficiency is that they have little physical background.
A piecewise linear unified yield criterion called the twin-shear-
unified was proposed. It is based on a kind of orthogonal dodeca-
hedron stress element. The effects of intermediate principal stress . . o .
are taken into account such that most available yield loci on thé  Twin Shear Unified Strength Criterion (TS-Unified)

m-plane are embraced in a unified manner. Besides, it is capablezl1 The TS-Unified Criterion Bridges Most Available

to represent not only convex limit surfaces but also nonconvex .o e Y h

- . eories on o Plane. The TS-unified is an extension of the

limit surfaces. [DOI: 10.1115/1.1320451 twin shear yield criterioffTS) ([6]) and the generalized twin shear

yield criterion(GTS) ([7]). The TS is based on a kind of orthogo-

nal dodecahedrofOD) stress element and it assumes that when a

. function of the two larger principal shear stresseg; (71, oOr

1 Introduction (713,723 reaches a critical value, the material begins to yield, i.e.,
For many engineering materials, two characteristic strength

properties are crucial, i.e., initial and subsequent yield properties. Ti3t T1o=0¢  When 71,=7p3
The initial yield defines the critical state when the material under 1)
the complex stress state starts to yield. The subsequent yield deals Tist Tog= 0y When 7,<1Ty3

with the post yield phenomena. It describes the material behavior
beyond the initial yield. The initial yield provides the basis. As
long as the initial yield property is defined, the remaining task is
to define the different hardening/softening properties and to incor-
porate them into the initial yield provided. In this note, the yield . S
criteria will be confined to the initial yield properties unless oth- ~ Twin Shear =1
erwise stated. Mises &=05
Generally speaking, yield criteria can be classified into two -
categories. The first category has originated from the concept of a
single shear stress yield criterion such as the Tresca and the
Mises. The Tresca is a maximum principal shear stigss cri-
terion. The Mises is an octahedral shear stregcriterion. They
both postulate that when,,, (0r 7, reaches a critical value, the
material begins to yield. Both the Tresca and the Mises are appli-
cable only to materials withi) equal tensile and compressive
strengthso;=o; (ii) linear failure loci on the meridian plane
(i.e., parallel to the hydrostatic axis which is represented by the

Tresca 5=0
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Fig. 2 Different yield loci on the
# o, or B#0)

w-plane for SD materials (o,

Where T13= (0'1_ 0'3)/2, To3= (0'2_ 0'3)/2, T12= (0'1_ 0'2)/2 are
the principal shear stresses,, o, andoj (01=0,=03) are the
principal normal stressesy is the uniaxial tensile strength.

B=0, the GTS is simplified to the TS. So the TS is a special case
of the GTS.

In the TS and GTS, the largest stresdesth the shear and the
normal stresseshave the same extent of influence as that of the
second largest. When different weight parameters are employed to
reflect the different effects of the largest stresses and the second
largest, the GTS can be generalized to the TS-unified. The TS-
unified can be expressed as

T3+ b7t B(oztbo) =C  when 75+ Bo15= Tyt Boag

©)

7'13+ b7'23+ ,8(0'13"’ b0'23) =C When le+ ﬁ0-12$ 7'23+ B0'23

whereb is a material parameter which represents the effect of the
intermediatdthe second largesprincipal stresses. The value lof
can be determined by material tesfs.and C are also material
parameters. If uniaxial tensile and compressive strefgihand

o) are chosen as the basic test points, theand C can be
expressed as

o.—0oy l-a (1+b)oyo. 1+b

B T 1+t

B o.toy lt+a ot oy “)
where a=o0/o is the ratio of the tensile to the compressive
strengths. The ratio is an index of the material strength differential
effect (SD effec).

The TS-unified is a series of piecewise linear yield criteria on
the m-plane as shown in Figs. 1 and 2. The exact form of expres-
sion depends on the choice of paramétewhich in turn can be

determined by some basic test results as illustrated in Section 2.3

The TS is an upper limit surface in the stress space complyigg this note. The TS-unified has the following characteristics as
with Drucker’s convexity postulate and is used for non-SD matehown in Table 1:
rials (oc,=0., where o, is the uniaxial compressive strength ) ) ) -
only. It is the counterpart to the Tresca, as shown in Fig. 1. The(@ With different choices of parametdr the TS-unified can
GTS extends the idea and assumes that the yield surface ig€asimplified to the Trescg8=0 andb=0), the linear approxi-
function of two larger principal shear stressesys(r,;) or Mations of Mises3=0 andb=1/2 or =0 andb=1/(1+v3)),

(713,729 and their corresponding normal stressess(co;,) or the Mohr-Coulomh(#0 andb=0), the TS(3=0 andb=1), the
(013,029, i.e., GTS (B#0 andb=1) and a series of new strength critef@her

values of parameterg andb).

(b) In the stress space, the lower and upper bounds for the yield
surfaces on ther-plane are special cases of the TS-unified, i.e.,
b=0 (B=0 for the Tresca oB+0 for the Mohr-Coulomp and
b=1 (B=0 for the TS orB+0 for the GTS, respectively.

(c) When the parametds varies between 0 and 1, a series of
yield surfaces between the two limiting surfaces can be obtained.

(d) When the parametds varies beyond the rangge., b<0

where o13=(01+03)/2, 01,=(01103)/2, 025=(02t03)/2. - 1), a series of nonconvex limit surfaces could be derived.
The parametep reflects the effects of the normal stresses so that

SD effect can be represented. Likewise, the GTS serves as th2.2 The TS-Unified Reflects Differento, Effects. The
counterpart to the Mohr-Coulomb, as shown in Fig. 2. Whehode angled,, is a parameter to represent the relative value of

2010,

when 71+ B0 15> T3+ Boog
v

When T12+ B0-12$ 7'23"" ﬁ0'23.

T3t Tt B(ozt o) = o to
ct ot

2000,
T3t Togt B(0131T 029) = o
C

Ot

Table 1 The characteristics of TS-unified

B=0 (oy=0=0y) B#0 (o F o¢) Drucker’'s Convex Postulate

b=0 Tresca Mohr-Coulomb Lower bound
7 plane loci Regular hexagon Irregular hexagon
0o _ 0i0¢
Restriction for application =5 Tt
0<b<1 New theories New theories Intermediate
7 plane loci Irregular dodecagon Irregular dodecagon

(b+1) (b+1)avo,,
Restriction for applications 0= (2+p) 70 o= (bt
b=1 Twin shear theory Twin shear theory Upper bound
7 plane loci Regular hexagon Irregular hexagon
2 _ 20v0¢
Restriction for applications T0=3 % = 20,
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Fig. 3 TS-unified can reflect the o, effect in a piecewise linear
manner; (a) e=1 and o3/0,=0.2 case; (b) a=1 and b=1 case

with respect too;, and o3. To reflect theo, effect, a theory

It should be noted that the stress an@is different from the Lode
angled,, and they are related as follows:

9= ——0,. 8)

Equation (5) is the explicit expression for the TS-unified in
terms of the stress angte With different choices of the parameter
b, the TS-unified can reflect different piecewise lineareffects.
Two illustrations are given. Figure(® shows the curves of
o, /oy versuso, /oy for a=1 andoz/o;=0.2. Obvious strength
difference can be observed when different criteria are adopted
(represented by different values of the paraméberThe maxi-
mum difference is about 25 percent. Figu®)3hows the curves
for =1 andb=1. The same conclusion can be drawn as from
Fig. 3(@). In other words, the TS-unified is capable of representing
variable strengths of the same material under different stress
states.

2.3 Application of the TS-Unified. If o, o, and the shear
strengthry are chosen as the basic material parameters, through
Eq. (3) for pure shear loading, the paramdbaran be expressed as

(ot o) 0= 010¢
b (oy—To)o¢ ' ®)

The parameteb plays an important role in the TS-unified. It
builds a bridge among different strength theories. It is this param-
eter that distinguishes one theory from another. On the other hand,
the scope of application of each theory is also represented by this
parameter. Hence, the TS-unified is a unified theory that can be
applied to more than one kind of material. In practice, when basic
material parameters are obtained by experiments, the valbe of
can be determined through E@). Whenever parametdris ob-
tained, the yield criterion is determined and the application is
possible([8]).

3 Conclusions

A piecewise linear unified yield criterion called the TS-unified
was proposed. Besides the capability that the TS-unified can
bridge most available yield loci on the-plane for both SD and

should embed this parameter in its expression either in explicit oon-SD materials, the most prominent characteristics of the crite-

in implicit forms.

The TS-unified is usually expressed in terms of the st(des
viatoric) invariants, that is the first invariant of stress tenkpr
the second invariant of stress deviatoric tenygr and the stress
angle 6, as follows:

ly a| 2\3, a(l-b) —
5(1—a)+ 1+§ CcosfH— 170 \/J—zsme
=0y when 0deg =<6
t g; b (5)
Iy 2-b | \3 ( b .
-+ pte 730050—‘a+m JJ,sine
=o0; when 6,<60=<60deg
where 6y, is the stress angle when the two E(s. are equal:
— 4L
0,=1g 1720 (0 deg< H,<60 deg. (6)

The stress anglé is defined to reflect the, effect as shown in
Fig. 2, such that

133 I

§COS T\/Tg

0= (0= 0=<m/3). @)

Journal of Applied Mechanics

rion are their capability to represent the effects of the intermediate
principal stresso, in piecewise linear forms. lllustrations were
given. The determination of the parameters was also discussed.

Future research could focus on the pursuit for some criteria that
can bridge different criteria both on theplane and on the me-
ridian plane. It is obvious that the representation for nonlinear
meridian loci can be obtained by adopting multiparameter crite-
rion instead of the proposed two-parameter TS-unified.

References

[1] Chen, W. F., and Han, D. J., 198®Jasticity for Structural Engineers
Springer-Verlag, New York.

[2] Mogi, K., 1967, “Effect of Intermediate Principal Stress on Rock Failure,” J.
Geophys. Res72, pp. 5117-5131.

[3] Michelis, P., 1987, “True Triaxial Cyclic Behavior of Concrete and Rock in
Compression,” Int. J. Plast3, No. 2, pp. 249-270.

[4] Faruque, M. O., and Chang, C. J., 1990, “A Constitutive Model for Pressure
Sensitive Materials With Particular Reference to Plain Concrete,” Int. J. Plast.,
6, No. 1, pp. 29-43.

[5] Li, X. C., and Xu, D. J., 1990, “Experimental Verification of Twin Shear
Strength Theory—The Strength Properties of Granite Under True Triaxial
Stress State,” Wuhan Institute of Rock and Soil Mechanics, Chinese Academy
of Science, Paper Yant{®0) 52 (in Chinesg.

[6] Yu, M. H., 1983, “Twin Shear Stress Yield Criterion,” Int. J. Mech. S@5,

No. 1, pp. 71-74.

[7] Yu, M. H., He, L. N., and Song, L. Y., 1985, “Twin Shear Stress Theory and
Its Generalization,” Sci. Sinica A28, No. 1, pp. 1174-1183.

[8] Yu, M. H., Yang, S.-Y., and Fan, S. C., 1999, “Unified Elasto-Plastic Asso-
ciated and Non-Associated Constitutive Model,” Comput. Strut,,No. 6,
pp. 627-636.

MARCH 2001, Vol. 68 / 343



Analytical Solution for W-N Criteria
for the Prediction of Notched
Strength of an Orthotropic Shell

R. Ramesh Kumar
Engineer, Structural Design and Analysis Division,

understanding of the maximum stress location is very essential.
Unlike in metallic structures, for fiber-reinforced orthotropic
shells, the maximum stress does not occur at the hole edge in a
plane normal to the loading direction, but depends on the fiber
orientations([5]). Moreover, establishing convergence for the fi-
nite element model for the isotropic medium for a known problem
does not ensure convergence for the orthotropic medium. Hence
an analytical solution that can bring out the overall behavior of the
orthotropic structure is very much required.

Structural Engineering Group, Vikram Sarabhai Space savin[6] in his complex variable approach to the problem of

Centre, Thiruvananthapuram 695 022, India

S. Jose

Senior Lecturer, Department of Mechanical Engineering

T.K.M. College of Engineering, Kollam 691 005, India

G. Venkateswara Rao

stresses in an isotropic circular cylindrical shell with holes
showed that the stress state in a shell is a sum of a plate solution
and a function of curvature effect. Konish and Whitnejg$ and
Kumar, Rao, and Mathewls7] orthotropic equationgplate were
'based on the sum of an isotropic plate solution and a function of
higher order term of distance ahead of the hole in terms of ortho-
tropic material constants. Thus one can conjecture that the ortho-
tropic shell solution in a polar coordinate systémé) can be

Group Director, Structural Design and Analysis Division,obtained as a sum of an isotropic plate equatfost term in(1)),

Structural Engineering Group, Vikram Sarabhai
Space Centre, Thiruvananthapuram 695 022, India

higher order term of distance ahead of a hkérd term in (1)),
and functions of isotropic and orthotropic curvature effestsc-
ond and fourth terms ii1)).

a5'(p,0)|

| Ortho

a5'(p,0)|

| ISO

Analytical solution for the tangential stress distribution ahead of +f(Biso
a hole is needed for the theoretical prediction of notched strength
of brittle laminate using the well-known W-N criteria. In the
present study, tangential stress distribution in an orthotropic cir-
cular cylindrical shell under uniaxial loading with a circular hole

is obtained intuitively with the use of a stress function. A good
agreement is obtained for the stresses around and ahead of the

circular hole in (0 deg, 30 degs and 90 deg laminates with higher order terms inp with 1
the finite element result$DOI: 10.1115/1.1320452 orthotropic coefficients forg @

higher order terms inp with
orthotropic coefficients

Introduction In the present work an analytical solution for the tangential
stress distribution ahead of a circular hole in an orthotropic circu-

Prediction of failure strength of brittle laminate with a hole waggy cylindrical shell under axial loading is obtained for use via the
very well established based on the W-N fracture critéda-4]). \W-N criteria.

Failure of the laminate occurs when the dominant stress near the

hole or the average of the domlnant_ stress over a region near Kﬁ’alytical Solution for the Tangential Stress Distribu-

hole reaches the strength of the laminate. Konish and Whitagy ..

developed an analytical solution for the stress distribution neartlgn

hole in an orthotropic plate. For the shell-type composite struc- The most general solution for the stress distribution near cut-
tures one has to essentially go for the finite element approachaags of any arbitrary shape under tension or internal pressures up
there is no such analytical solution available in the literature fao an accuracy oB? was given by Pirogoy8]. The equation with
employing the W-N criteria. For the best numerical results a cleanknown coefficientslike A, By, Ex, Fx, etc) is of the form

¢

)

_ - BY - k-2 . BY
2AY) In LA AP+ —22)00326 + > (2—k—2A§1)+—kk— coské
P k=46,... \ &P p
1 _ o * gD gD
yB) w k k
Im()=— 2BJ In| — | — —(2AY+ AY)p2+ (—k—_ + —¢ | coske @)
A R o A b A R N P
P -7 . - FY
+|—(AY +AY) p2+ EP + —| cos 2.
\ 4 p J

Based on the above stress function, Savin obtained the tangsotropic shell of radius R” and thickness ‘t,” under axial load-

tial stress distribution around a circular hole of radiws’ ‘in an
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ing, as a sum of an isotropic plate solutiomﬁ,’((p,e)/a) and a
function of isotropic curvature parametgk, The solution is valid
for a hole whose projected siZen a plane passing through the
axis of shell and normal to the axis of hpis close to the actual
hole size.
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o5 (p.0)|  1-cos2 1

o |ISO 2 * 2_p2 90012
T PRESENT
3 cos 29 (=isotropic plate solution ° RESULTS
20" ~Isotropic p b FE RESULTS
2 o /_
7TB o]
1+ cos 20
8 p?
(=function in isotropic B, f(8)iso)- 3) o
Similarly for an orthotropic shell, _i -2 0 2 4
Co/C —>
a3'(p,0)| a5 (p,0)] 0
| = | +f(B)orno (4) a
Ortho Ortho sl e
4 2 . . ,?
whereBouno=[3(1— v°)(E,/Ey)/2]a/JRt, v=Poisson’s ratio, ] i
E, andEy are the moduli of elasticity i and Y (loading direc-
tion) directions([9]), and (@5'(p, )/ ) for the orthotropic plate is ;; %
available in Kumar et al.7]. -
=
ay'(p,0)| 1-Cos2 1 3
| = 5 + 572 FCOSZH
9 lonho p p
o —Cy[4j-3 4j-1 _
+ - CosZ60 (5
jzz 2 p4j 2 p41 % ( )
Details of the orthotropic coefficient,; (j varying from 1 tox)
are given in the Appendix. 5
It can be noticed from Pirogov’s stress function given(in 0 5

that the higher order terms for the plate solution ghére of Ga/C
S h X X ) X 9 -
similar trigonometric relationship. Therefore, the functionsgof

may be expressed as Fig. 1 Tangential stress distribution around a circular hole in

an orthotropic shell

B2 |1 3
f(IB)Ortho:__z 2|11 —3|Cos ¥
4J 3 4] then one fourth up tp=2 in the radial direction, while ir9

o]
22‘

Thus the final expression for the tangential stress distribution forBoundary Conditions. Symmetric boundary conditions are
an orthotropic circular cylindrical shell with a circular hole isapplied at the symmetric planes.

Cosa 0 (6) direction, it is at every five-degree interval along the circumfer-
ence of the hole from 0 deg to 180 deg.

iven b . L . .
gw Y Loading. A distributed load of 240 N is applied on the nodes
a'gh(p,('))‘ l-cos2d 1 3 ” B2 at the top circumference. The load is distributed in each element
= + coOS 20— —— i i ‘4 i
= ‘Onho 2 202 2p4 3 in the ratio of 1:4:1 among the nodes in an element.
3 7 3°
1+ —|cos20; +| 1+ ——
p? 2
o —Cy [4j—3 4j—1) _
X — cos20;.
{ JZZ 2 p4j 2 p4j %
A
(7) 0 + +
In this work, circular cylindrical shells with (Q+30)s and 1 I
(90);2 lay ups made of high modulus M55J/M18 carbon/epoxyy, _, | “\\_FE RESULTS

laminate having material propertie€y=328.949 GPa, Ey t'\’

FOR (98%),ATO = ¢°
SENT RESULTS

=5.955 GPaGyy=4.414 GPa andyy=0.346, with layer thick- -4l s
ness of 0.1 mm is considered. * 'Z
-6 P
Finite Element Modeling
The laminated circular cylindrical shellR=48 mm, t -8 ’
=1.2mm and height180 mm with a hole of radiu@=5 mm is 10 . .

modeled using eight-noded layered shell elements available 1 1 1z 13 L
NISAZ2 finite element software. Due to the symmetry, one fourtt
of the shell(at its half heightis modeled. The region around the
hole is modeled with a finer mesh with an element size of ormg. 2 Tangential stress distribution ahead of a circular hole in
tenth of the hole radius up f©o=0.5, then one fifth up tp=1 and an orthotropic shell
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R | nd Di ion [6] Savin, G. N., 1970, “Stress Distribution Around Holes,” NASA Technical
esults and SCUSSIO Translation, NASA TTF-607.

Initially, convergence of7) is established by progressively in- [7] Kumar, R. R., Rao, G. V., and Mathew, K. J., 1999, “A New Solution for
creasing the number of terms till a converged value is obtained Prediction of Notched Strength for Highly Orthotropic Plate,” J. Aeronaut.
S " Soc. India,51, No. 1, pp. 28—34.
FOI’_ the present cases _te_rms up@g, (j=11) are needed to [8] Pirogov, I. M., 1962, “On Approximate Solution of Basic Differential Equa-
achieve convergence within one percent. It may be noted that for - tions in the Theory of Shells,” Izv. Vuzov. Mas.1.
B=0, (7) reduces to the orthotropic plate solution. [9] Lekhnitskii, S. G., 1947Anisotropic PlatesGordon and Breach, New York.
Using (7) the tangential stress distribution around a hqie ( [10] Krylov, V. 1., and Kruglikova, L. G., 1969Handbook of Numerical Harmonic
=l) is obtéined and Compared with the finite element results as Analysis Israel Program for Scientific Translations, Jerusalem.
shown in Fig. 1. The maximum stress concentration factor of
—8.56 is observed at=0 for (90),, laminate, as against the
finite element result of-8.71. The deviation in the results is es-

timated as two percent. Stress Wave Propagation in a Coated
In the case of (®,*=30)s lay up, the peek stress occurs ét ;

=90deg as expected, with a stress concentration factor valEeIaStIC HaIf-Space due to Water

equal to 5.18 as against the finite element result of 5.44. It can E}rop Impact

noticed that the deviation between the two values is about five

percent. The stress distributions away from the holeferl to 2,

for the two types of lay-up sequence considered are shown in Figyun-Sil Kim 1

2. From the finite element analysis, it is found that as a percentagénail: hskim@kimm.re.ir

of total stress, bending stress constitute within two percent for the

types of lay-up sequences considered. It is concluded that t ;

present solution shows a reasonably good agreement with the‘lj]fﬁe'seung Kim

nite element results. Mem. ASME

Conclusion Hyun-Ju Kang

A new analytical solution for tangential stress distribution fo .
an orthotropic circular cylindrical shell with a circular hole underE-"ang'RyUI Kim
axial loading is derived which gives good agreement with finite
element results. The solution can be used with W-N criteria fékcoustics Lab, Korea Institute of Machinery and

the prediction of notched strength of an orthotropic shell with gaterials, Yusong, Taejon 305-600, Korea
circular hole.

Appendix o .
Stress wave propagation in a coated elastic half-space due to
There is a standard techniq([&O]) for determining the Fourier water drop impact is studied by using the Cagniard_de Hoop
coefficientsC,; of a function as in(7): method. The stresses have singularity at the Rayleigh wavefront
_ whose location and singular behavior are determined from the
AoCot ACat AgCa=280 pressure model and independent of the coating thickness, while
reflected waves cause minor changes in amplitudes.
[DOI: 10.1115/1.1352060

(Ala)
A,Co+ (Ay+2A0+)Co+ACu+A,Co=2a, (Alb)

and forj>3 a recursive relationship exists in the form

-1
Cy; :A—4[A2C21—2+ 2A0Coj— 4+ AsCoj 6+ A4Cy ]

(Alc)

where ag=4k(n+k—1); a,=—4k(n+k+1); Ay=3+n?-2k
+3k?
A,=4(1—-K?);

A,=(1—n2+2k+k?) (A2)

n:N/K, N:\/Z(K_ny)_gxlaxy

k=1/K, K=VEy/Ey

EX,EY ,RY,EXY are the overall orthotropic properties of th

shell.
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method([4]). We use the same pressure model as Blowers, which|t can be shown that the coefficienl:s},,Dlﬁ,Ui,Ul are ex-

. . . ! B

means that our solution is useful only in early stage of the impagiessed in terms of the infinite series, whose physical meaning is
process before lateral outflow jetting takes place. However, tfigat the solution in the coating is composed of the reflected waves
results are of great importance, since high stresses and possif@ the number of reflections can increase infinitely. The typical

damages may occur in a very early stage of the impact. form I, of the infinite series in the stre§x can be expressed as
Theory 1= Ref f Re(w,q)e P%Wddwdg, 4)
As shown in Fig. 1, we consider a coated elastic half-space ( 0Jo

>0), where a thin elastic layer of uniform thicknéskes over the where R, (w,q) and g,(w,q) are independent of the variabfe
surface. On the surface, the stress generated by a water drop aimd g, is of the form
pact is given in a cylindrical coordinate by
T Atz)==P, r<knt, odrzH)=0, r>kpk,
(

ge(W,q)=w?+qg°—iwR+ E boyW2+ g2+ adlcs,  (5)
1) "

whereP is a constant pressure alg is a constant determined in which ¢, is a; or §;.

: ) / In order to apply the Cagniard-de Hoop method, we deform the
from the diameter and impact velocity of the water dff)). . . - : .
The potential functions in the coating and half-space satisfy tigegration path such thag(w,q)=T. The new integration path
wave equations w=w(T,q) intersects the imaginany-axis atw=iv,. We per-
q form the integration along the new pathTrand change the order
) 1 92 ) 1 9%y, of integration to find the inverse Laplace transform as
Vidi=——z V= oo, @
a; i am aw
where the subscrigit=1 is for coating, whilei=2 for the half- lk(T)_Re{ Jo R, ) 77 da | H(T=Tn(0)), ©)
space. The parametesis and B; are the sound speeds of P and S

waves in théth medium. We nondimensionalize the parameters iffherédm and Ty, satisfy the relationT(qm) =T, andH(T) de-

a similar way as Blower§3] did, and transform the wave equa-"0tes & Heaviside step function. After summationl dfT) over
tions by applying the Laplace and Hankel transform with respel&te rays, we can compute the stresses. Depending on the relative
to the nondimensionalized tini& and radial distanc®. In the Positions ofw=ivy and the branch points, we may have to intro-
coating, the solution consists of upgoing and downgoing wavékce additional integration path to detour the branch cut, which
due to the reflections at the interface and free surface, while in t1§&ds to the head wave. _

half-space the solution contains only downgoing waves. The un-henZ=0, we need to include the Rayleigh surface wave
known coefficients can be determined from the boundary

. H(T+a%?-aR)

conditions. - IR(T) =D 7)
We show, for instance, the Laplace transformed st@gsin V(T+a%) —a’R

the coating

whereDy, is the coefficient associated with the residue term and
_  2Re (= (*[a? a=aq/cg, in whichcg is the Rayleigh wave speed in the coating.
SéR:_f f [(B_;—Z—ZWZ) The surface wave in Eq7) has singularity aR=(T+a?)/a.
T Jo Jo 1

X (Dle P7aZ 4 Ule PraH=2)) Numerical Example

For a numerical example, we consider a case that the diameter
+2w2(m)(D;e*P’7mZ and velocity of the water drop amy=2 mm, V,=453 m/s, and
4 the thickness of the coating is 48n. The material properties of

the coating are: Young's modulug;=1.71xX 10" N/m?, «a;
_U;-ge_p"ll,B(H_Z))

eRP¥pidwdg, €)

whereD,D3,U;, U7 are the coefficients to be determined from \
the boundary conditionsZ and H are the nondimensionalized ]
depth and coating thickness, apd{ are the Laplace and Hankel
transform variables. The parameterg, and 7,5 are 7,

=J%+1 andn,g= \/§2+a12/,821. 3
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Fig. 1 A coated elastic half-space subject to water drop
impact Fig. 2 Snapshot of the stress Sgr when t=0.05 us
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Closed-Form Representation of Beam
Response to Moving Line Loads
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Fig. 3 Variation of the nondimensional stresses Srr and Sy
as functions of the radial distance  r on the surface when ¢ Fourier transform is used to solve the problem of steady-state
=0.05 us. Solid line with marksis Sz when there is no coating response of a beam on an elastic Winkler foundation subject to a
and the substrate is filled with the same material as coating. moving constant line load. Theorem of residue is employed to
evaluate the convolution in terms of Green’s function. A closed-
form solution is presented with respect to distinct Mach numbers.
=5910 m/s, 8;=3160 m/s, densityp;=6590 kg/rﬁ; for sub- Itis found that the response of the beam goes to unbounded as the
strate, E, = 6.74x 10° N/m?, a,=4150 m/s, 8,=2220 m/s,p, load travels with the critical velocity. The maximal displacement
response appears exactly under the moving load and travels at the
ame speed with the moving load in the case of Mach numbers
eing less than unity.[DOI: 10.1115/1.1352064

=5270 kg/mi. The substrate material is Zinc-Selenide. In Blow
ers’ paper, the only specified material property is Poisson’s ra
v, and we use the same value hereva®.3 for both coating and
substrate, for which case=2.017.

In Fig. 2, we plot a snapshot of the nondimensional stBgs
at 0.05us. There is a sharp peak near the surface, which corre- ;
sponds to the Rayleigh wavefront st 224 um (R=(T+a%)/a £ Introduction . .
=5.84). The boundary of the impact is=213um (R=2\T The response of beams to moving loads has been studied ex-

—5.56). In Fig. 3, we show the stressis; andS,, at the surface tensively over the past several de.cad'ayb.a[l]). The investiga-
as functions of the radial distance, in which the symbols “B,'tion of Bernoulli-Euler beams with moving loads includes the
“R,” and “L” mean the boundary of impact area, Rayleigh work of Kenney[2], Steele[3], Huang[4], Choros and Adams

wavefront, and longitudinal wavefront, respectively. For compan®), Jezequel6], Elattary[7], Lee[8], Sun and Dend9], Sun
son, we also show the streSgz when there is no coating and thel10], Sun and Greenbeid.1], and Benedeti12]. It is found that
half-space is filled with the same material as the coating. the moving load is often treated as a concentrated load. Since the

concentrated loading condition is only an idealized model of the
. tire load, it is preferable to use a distributed line load model to
Concluding Remarks characterize the wheel load more realistically.

It was shown that the pressure model in Et). produces an  Denotey(x,t) as the deflection of the beam jadirection, in
annular strip of the high tensile stresses outside the contact awgsich x represents the traveling direction of the pavement struc-
due to the Rayleigh wave, which has been observed experimeéue, and represents time. The well-known governing equation of
tally by Hand et al[7]. The location and singular behavior of thea Bernoulli-Euler beam on a Winkler foundation(8un[10])
Rayleigh wavefront are determined from the pressure model and
independent of the coating thickness. The region directly under 4 ) ) )
the contact area is in pure compression. Since the stresses cannot El &_y+ K +m(9—y _ Hlro—(x—vt)] )
have infinite magnitude in real impact situations, the singularity in axd Y at? 2rg
the present study may be due to the abrupt change of pressure
model at the impact boundary.

whereEl is the rigidity of the beamE is Young’s modulus of
elasticity,|l is the moment of inertia of the beaiq,is the modulus
Acknowledgment of subgrade reactiom is the unit mass of the beam, is the

The authors would like to thank the Ministry of Science andialf-width of the line loadP is the magnitude of the applied load,
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Critical Technology 21 Project. The Green’s function of the beam is defined as the solution of
Eq. (1) given that the right-hand side external load is character-
ized by 5(x—Xp) 8(t—tp). Taking two-dimensional Fourier trans-
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7 [ explilE(x—Xo) + w(t—to) 1} (b) Sonic caseN=1). _
G(X,t;Xg,tg)=(27) 2[ J ElE%+ K—ma? In this case two duplicated roots of E() are u; ;= mv?/2.
e Thus four real valued roots; ,= &5 ,= + (mv?/2)Y2 Since these
X dédo. (2) two poles are of the second order, this means that a singularity

. ) ) . occurs when integrating4) along the contour. Using the same
Thex sglutlon of (1) given F(xt) is given by y(xt) procedure as in the case bf<1, it is found that dynamic re-
=22 LF(X0,t0) G(X,t; X, to)dxodty.  Substituting Egs.(1)  sponse in this case becomes infinite and the singularity is of the

and(2) into it gives orderO(e 1. This result indicates the existence of a resonance
P (> sinrpéexgié(x—uvt)] phenomenon as = v cical -
y(xt=5— ﬁw rof(£ —Mu2E2+K) ) (¢) supersonic caseM>1). B
_ _ o Two roots of Eq.(4) areu;=[mv?(1+1-M %]/2 andu,
whereP=P/El, K=K/El andm=m/El. =[mv?(1—J1—M%)]/2. Therefore, we have real valued roots
&,=*R;  and  &,=*R, where R;={mv’[1+(1
2 Closed-Form Representation of the Solution —M~4Y2)2112 and Ry={mv?[1— (1—M~*%)¥2)/2112, Appar-

Expression(3) can be further developed using complex funcgntly, since the distribution of the roots of the characteristic equa-

tion theory. To do so, one needs to identify the roots of the chd{o" depends heavily on the range of the Mach number, one may
- . . 4, — 2.0 . expect that dynamic response of the beam to a moving load will
acteristic equation of this typ&”+K—mv“& =0. Define a new also be distinct for different Mach number.

variableu= ¢* so we have a quadratic equation The poles of a system without damping can be thought of as the
u—mu2u+K=0. (4) limit situation of poles of a system with damping while the damp-
N ) — ) ] ing is approaching zero. The poles of a physical system with tiny
Denote the critical velocity asic.= (4K/m?) . Define dimen- gamping can be determined by seeking the roots of a new char-
sionless velocityi.e., the Mach numbeM =v/v gicar - acteristic algebraic equation in which a negative infinitesimal
(@) Subsonic caseM<1). imaginary term is added into the previous characteristic algebraic
Two roots of Eq.(4) areu,=[mu?(1+iyM~*—1)]/2 andu, equation, i.e.£*— mv2&2+ K —ie=0 wheree is a positive infini-
=[mv*(1—iyM~*=1)]/2. Further, we have four complex val-tesimal real number. Sinae= ¢. This new characteristic equa-
ued roots & ,=(mv%2M?)Y2exdi2jm+6)/2] and &4  tion becomes
=(mv?/2M?)Y2exdi(2j7— 6)/2] in which tang=(M *—1) and
j=0 and 1. In the case of—vt=0, we select the closed contour
in the upper half¢-plane and, ifx—vt<0, in the lower half The square root of the discriminant of E) is AY2=mv?(1
&-plane. To shorten the length of the paper, only the caset —M 4H%exp(yi2), in which tang=B(1-M 4! and B
=0is consid_ered in the following. Applying the theorem of resi-:4ﬁ—zv—48. Since—0" ass—0", we havey—0" andu,
due we obtain _ _ =121+ (1- M- ¥Jexpih,) and u,=1/2mu1—(1
y(x.t)= P |, S e sinroé exdié(x—vt)] -M~9Yexpir,) as two roots, in which tan;=(1
T 27Elr, 0 E(E—mu2E2+K) —M™HY2singl2/1+ (1- M~ Y2cosyf2  and  tan,=—(1
) ) —M " H2sinyg2/1— (1—M 4 Y2cosyl2, respectively. Thus
i S re [smro§exr{I§(x—vt)]H 5 fRi exdi\+2jm)/2] and &;,=R, expi(\,+2jm)/2], (j

u2—mu2u+K—ie=0. @)

0 E(E4—mu2E2+K) =0,1) where Ry ,={mv¥1+(1-M~%?)/2}2 Realize \,

. o . . . . =lim,_ o+ arctan(tar\;)=0" and \,=lim,_ o+ arctan(tam,)
$—0 2 $—0
?ét:r identifying the residues in Eq5), it is straightforward to =07, as¢—0", the rootsé;, &, &5, and¢,, respectively, ap-

. . 12 +
iPp sinroé exdi & (x—vt)] proach their own limits ar§1,2={zl+xl/2={?7+0+ and argé; 4
Y=g 2 Ty ® e o
01=14 & —mog *{w+>\2/2*{ﬁ+0*-

Im(&) ¢ -plane

argument |12 / 2|

Fig. 1 Poles of the beam on an elastic foundation with tiny amount of
damping
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Figure 1 depicts the distribution of these poles in the complex[9] Sun, L., and Deng, X., 1997, “Transient Response for Infinite Plate on Win-

&plane. Asv approaches critical velocity ey (i-.€., M—1), ng 2F°g‘,§‘d$§3’}8by a Moving Distributed Load,” Chin. J. Appl. Mecha
four poles (black pointg will move towards those pole&gray  [10] sun, L., 1998, “Theoretical Investigations on Vehicle-Ground Dynamic Inter-
points of the casev =v;ica- Each pair of gray points on one action,” Final Report prepared for National Science Foundation of China,
side of the imaginary axis will get more and more close to each _ Southeast University, Nanjing, China.

: 11] Sun, L., and Greenberg, B., 2000, “Dynamic Response of Linear Systems to
other asM _.>1’ and becomes a Slng.le pOIe of the second ordef. Moving Stochastic Sources,” J. Sound Vi229 No. 4, pp. 957-972.
The dynamic response of the bean is given by [12] Benedetti, G. A., 1974, “Dynamic Stability of a Beam Loaded by a Sequence

. . . of Moving Mass Particles,” ASME J. Appl. Mech41, pp. 1069-1071.
iP sinrgé exgié (x—ot)] g PP PP

= — for x—vt=0.
2Elrg 154 5§|4—mv2§|2+K v

(8)
In the case ok—vt<0, we just need to replade=1,4 in Eq.(6) AN Analytic Algorithm of Stresses

or(8) by l=23. for Any Double Hole Problem

3 Maximum Response in Plane Elastostatics
Define »=x—uvt. The derivative ofy(x,t) with respect tozy

suggests thay=0 correspond to the extreme point. The maximum

response in the case 8 <1 can be obtained by substituting Lu-ging Zhang

—vt=0 into Eq.(7). Define new parameters. The maximum reEngineering Geomechanics Laboratory, Institute of

sponse is yma"{x=vt)=iP/Elro{sinr exp(6/2)]/S;+iW:  Geology and Geophysics, Chinese Academy of Sciences,

+sinfr exdi(— 0+ m)/2]}/S,+iW,} in which S;=5¢*cos 2 Beijing 100029, China

—3mu?¢?cosh+K,  S,=5¢* cos B+3mvle?cosh+K, W,

=5¢* sin 20—3mv2¢? sin 6, and W,=5¢" sin 26+ 3mv?¢? sin 6,

¢=(mv2/2M?)Y2 andr = ¢r,. Using Maclaren series to expand

yro"Yx=vt) and taking only the real part

Ai-zhong Lu

Professor, Department of Civil Engineering, Shandong
moving )= P (A;S;—B;W; N AxS;— BoW, ©) University of Science and Technology, Tai'an
Ymax AX=0 Elrg| S+W? W2 271019, China
where
A i (—D)"r2*Lsin 6(2n+1)/2] This paper gives an analytic algorithm to plane elastostatic prob-
T = (2n+1)! ' lem of an infinite medium containing two holes of arbitrary shapes
and arrangement, using Schwarz's alternating method, and finds
Z (—1)"r2*1cog o(2n+1)/2] that the method has a very quick convergence speed even for
B,= TR , solving a complex double hole problem.
A=0 (2n+1)! [DOI: 10.1115/1.1352065
“ r2tlcog 6(2n+1)/2]
A= | and )
=0 (2n+1)! 1 Introduction
B, r2"*lsin 6(2n+1)/2] There are a large number of papers in plane elastostatics deal-
2T~ (2n+1)! ' ing with regions containing two circular holégl—4]). It seems

It should be noted that, although=0 can maked/dzy=0 that only Hasebe et a[5] provided one analysis method for the
satisfied, it is a sufficient condition rather than a necessary con@roblem of two complex holes in which one hole is of complex
tion. Actually, the response of the beam at the center of the mdiofile and the other is a crack. However, the method is only
ing load is the maximal response in the casevbf 1, while the Suitable for a symmetrical double hole problem.
response of that location remains quiescent in the cabtet. It~ The crucial ingredient in solving a double hole problem by
also should be pointed out that similar method is applicable fB€ans of Schwarz’s alternating method is the repeated solution of

moving load problem with damping considered in the governing Single hole problem, which can be well solved by Muskhelish-

equation. Given the limit of the content, the result is not presentdfi's method ([6]) via a conformal transformation of mapping the

herein. given hole shape into a unit circle. The iterative solutions for the

Schwarz’s alternating method needs many repeated transforma-

tions between the physical and mapped planes. In order to conduct

References the iterative solutions easily, two mapping functions of two holes,
[1] Fryba, L., 1977 Vibration of Solids and Structures Under Moving Loads Z,=w4({41) andz,= w,(¢,), and two corresponding inverse map-

poordhoff, Groningen, The Netherlands. ng functions {1 = w; *(2z;) and{,= w, *(z,), are introduced. In

[2] Kenney, J. T., 1954, “Steady State Vibrations of Beam on Elastic Foundatidl! . . ! } :
for Moving Loads,” ASME J. Appl. Mech.21, pp. 359—364. the process of iterative solutions every iteration refers to the

[3] Steele, C. R., 1967, “The Finite Beam With a Moving Load,” ASME J. Appl.completion of solutions for two single hole problems.

Mech., 34, p. 111.
[4] Huang, C. C., 1977, “Traveling Loads on a Viscoelastic Timoshenko Beam,” . .

ASME J. Appl. Mech. 44, pp. 183-184. 2 Basic Formulas for Stress Analysis of Any Double
[5] Choros, J., and Adams, G. G., 1979, “A Steadily Moving Load on an Elastif{gle Problem

Beam Resting on a Tensionless Winkler Foundation,” ASME J. Appl. Mech., ) ] )

46, No. 1, pp. 175-180. In Fig. 1z, andz, are the complex coordinates ¥30,y,; and

[6] Jezequel, L., 1981, “Response of Periodic Systems to a Moving Load,)’& o local coordinate systems. respectivetyis the relative
ASME J. Appl. Mech. 48, pp. 613-618. 202Y2 y ’ P ]

[7] Elattary, M. A., 1991, ‘Moving Loads on an Infinite Plate Strip of Constant—
Thickness,” J. Phys. D: Appl. Phys24, No. 4, 541-546. Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
[8] Lee, H. P., 1994, “Dynamic Response of a Beam With Intermediate PoifMECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED
Constraints Subject to a Moving Load,” J. Sound Vib71, No. 3, pp. 361— MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar.
368. 22, 2000; final revision, Sept. 20, 2000. Associate Editor: J. R. Barber.
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wq(0q)

¢11(0op) + e11(o1) +1i(o1)=TF1(0o7) 1)

w1(0oq)

where a prime on a function denotes differentiation with respect to
its argument, and a bar on a function indicates its conjugatés

the value ofZ; on the unit circle;p.4(01) and ¢4(0o;) are the
values of ¢14(¢1) and 41(Z;1) on the unit circle, respectively;
f1(o) is the principal vector of surface forces at the edge of hole
one.

The stress functiong,(£;) and ¢4({,) can be used as the
loading functions for solving another single hole problem induced
by the presence of hole two. At this stage the boundary conditions
are satisfied at the edge of hole one, however, there exist redun-
dant surface forces at the edge of hole two. The redundant surface
forces are obtained directly by three coordinate transformations
between coordinates,, z,, z; and{; and a formula

(y1)———
f10p) = @11(y1) + orn ©11(v1) + ¥11(v1) v

!

Fig. 1 The calculating model for any double hole problem @Y1

where o, is the value of boundary poirt, of hole two in ¢,

v A plane; f15(0,) is the principal vector of the redundant surface
forces with respect to,; 7y, is the coordinate oé, in {; plane
via mapping transformatiom,= w,(0,), coordinate translation
T,=t,+c and inverse mapping transformatio«w:wil(Tl).

f%\ The distribution off,,(05) at the edge of hole two can be

L

-
b

-
-
X

0 approximated by complex serie> Dkog, in which D, is the
k=-L
X F complex coefficient ofo. In order to eliminate the redundant
S L L
surface forces, the reversed forces & Dyo%, — 3 Dyo%,
Fig. 2 The problem for two circular holes k=-L k=-L

are imposed at the edge of hole two, yielding the other single hole

problem in the first iteration. The solution for the presence of hole

two can be expressed by two complex stress functiog$l,)
position vector of two holes ix;0,y; coordinate systemg;,, and,y({). The corresponding stress boundary condition is

oy, and 7y, are external loads uniformly distributed at infinity. )

In the process of the first iteration, the presence of hole one will wy(0y)
lead to a single hole problem, whose solution of stresses can bepyy(o5)+ @ 02) + thoo T5) = Fo(0) — Z Dka'§
written in terms of two complex stress functiong;;({;) and wy(0y) k=-L
¥11(£1), of the complex variablg,. The stress boundary condi- 3)

tion for the presence of hole one is

Table 1 The comparison of the maximum tensile stresses at the edge of the right hole from two methods

. all-around unit tension horizontal unit tension vertical unit tension
A solution
6=0 O=nx O=+x/2 @=-x/2 6=0 8=n
2 exact solution 2.894 © 2.569 2.569 3.869 ©
iterative solution | 2.659375 35.570570 | 2.557303 2.557303 3.601490 | 40.281910
3 exact solution 2.255 2.887 2.623 2.623 3.151 3.264
iterative solution | 2.254839 2.887496 2.623146 2.623145 3.150994 | 3.264019
4 exact solution 2.158 2.411 2.703 2.703 3.066 3.020
iterative solution | 2.157655 2.410827 2.702637 2.702636 3.066025 | 3.020181
6 exact solution 2.080 2.155 2.825 2.825 3.020 2.992
iterative solution | 2.080380 2.154591 2.825038 2.825037 3.020114 | 2.992179
10 exact solution 2.033 2.049 2.927 2.927 3.004 2.997
iterative solution | 2.032807 2.048810 2.926672 2.926672 3.004336 | 2.996998
16 exact solution 2.014 2.018 2.970 2.970 3.001 2.999
iterative solution | 2.013795 2.017700 2.969799 2.969798 3.001042 | 2.999149
w exact solution 2.000 2.000 3.000 3.000 .| 3.000 3.000
iterative solution | 2.000000 2.000000 3.000000 3.000000 3.000000 | 3.000000

Note: To see the difference from the exact solution with three decimal numbers, every iterative one is given by six

decimal numbers.
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Fig. 3 The problem for two complex holes

(MPa)

a

1.5 -

A

¢} 40 80 120 160 200 240 280 320 360

wheregy,(a3) and,y( o) are the values op,y({>) and,x({>)
on the unit circle inZ, plane, respectivelyf,( o) is the principal

vector of surface forces at the edge of hole two.

The superposition 0f11(£1), #11({1) and @5({2), ¥22(L>) is
the solution for the first iteration of the Schwarz’s alternating
method. At this stage, the boundary conditions only at the edge of
hole two are satisfied. Of course, the second and later iterations
can be operated.

Taking ¢(¢) and () as the superposition of two stress func-
tions for all required iterative solutions, the stress components can
be obtained readily.

3 Discussions on the Convergence Accuracy of Itera-
tive Solutions

3.1 Comparison With the Exact Solution for the Problem
of Two Circular Holes. Now let us consider a linearly elastic
medium containing two equal circular holes, as plotted in Fig. 2.
Three fundamental loading cases are discussed in some detalil,
namely, the all-around, horizontal and vertical tensions applied at
infinity. Owing to the symmetry of the problem, Table 1 only

25

P
[
T

-
T

T p (MPa)
S o
w (o] "
A

'
ey
T

b
<]
T

0 40 80 120 160 200 240 280 320 360

g,(")

— three iterations — — — five iterations —- —- ten iterations - fifteen iterations — — twenty iterations

Fig. 4 The redundant surface forces

o, and 7,, for different iterations

Table 2 The maximum compressive stresses at the edges of two holes

hole two
hole two D
hole one D
arrangement D D c=4.0+0.0/
hole two
hole one
c=0.0-4.0i c=2J2 =22i hole one

loads position hole one hole two hole one hole two hole one hole two
ol =2 @ =141 14.713 14.722 15.742 13.297 14.181 11.657
O-;a = 6 =219 13.653 13.667 9.724 23.706 14.181 11.657
oo =15 g =141 14.425 14.436 16.030 10.339 14.978 15.010
or=l5 1 g o0 | 11291 11.336 12.446 25.258 14.978 15.010
o =1 e =141 14.566 14.574 16.817 7.859 16.208 18.801
0; =2 6 =219 9.538 9.587 15.688 28.087 16.208 18.801
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gives the maximum tensile stresses on the boundary of the righomentum. We find the differential equation of the tautochrone
hole in which the iterative solutions are obtained by the Schwarzisirves. While this differential equation is difficult to solve analyti-
alternating method for ten iterations and the exact one given bglly, several exact solutions (in terms of elementary functions)
Ling [3]. are obtained in an indirect manner. Intuitive motivation for tau-

3.2 Accuracy Analysis for the Problem of Two Complex tochrone motion is given[DOI: 10.1115/1.1352066
Holes. Let us consider the problem of an infinite and linearly
elastic region, containing two complex holes, only under the ai- Introduction
tion of compressive stresses at infinitg =10 MPa anday
=20 MP3 (see in Fig. 3 If the solution is terminated at some Consider a bead of unit mass that moves on a frictionless wire
iteration, the boundary condition of zero surface forces along haléscribed by the curve=x(y) in the xy-plane. Assume that the
two will be satisfied exactly and along hole one approximatelfead starts at tim¢=0 at the point ¥(Y),Y) with no initial
Figure 4 plots the distribution of redundant surface forces alorglocity and that the curve=x(y) terminates on the-axis at the
hole one for 3, 5, 10, 15, and 20 iterative solutions, seen fropPint (xo,0). The motion of the bead is governed by a potential

which the redundant surface forces are gradually reduced to X4y) as it moves along the curve=x(y). This curve is called a
roes as the further iteration. tautochronef the time T required for the motion from the starting
point at x(Y),Y) to the final point &y,0) isindependent of Mthe
4  The Maximum Stresses Around Two Holes for Dif- starting height on the curyeThe problem of determining the
ferent Loads and Arrangements shape of the tautochrone curve under the gravitational potential
. . N V(y)=gy was solved by Huygens and by Abel. The authors stud-
This paper still takes two holes in Fig. 3 as examples, onlq this problem under arbitrary potentidl§y) in a recent paper

changing the loads at infinity and arrangement of the two hole$s), sing the fractional calculus. In this paper we assume that the
Three loading cases and three arrangement cases are investiggtet- 1o containing our curve=x(y) is rotating with constant

and the maximum stresses at the edges of two holes are preseqfed|ar momentunh about a shaft centered on theaxis.

in Table 2. In our previous study[1]) (angular velocityw=0) we deter-
mined that the timeT for the bead to descend frog=Y toy
Acknowledgment =0 is given by

This paper is supported by the Chinese National Natural Sci-

. Y ds
ence FoundatioiNo. 49772168 f — - 2T (1)
0 VV(Y)=V(y)

References Here s measures the distance along the cukrvex(y) starting
[1] Howland, R. C. J., and Knight, R. C., 1939, “Stress Functions for a Plafrom (X,,0) to the point k(y),y). Using the fractional calculus
2] goma'"ﬁggrofgjom %rcu'arl"';'ﬁsv" Ph"oz T:ang?w? Pp- ;57—3(?2- we determined that when the curve is a tautochrone, then the

reen, A. G,, , “General Biharmonic Analysis for a Plate Containin :
Circular Holes,” Proc. R. Soc. London, Ser. A76, pp. 121-139. %Otemlal and the arc length are related by
[3] Ling, Chin-bing, 1948, “On the Stresses in a Plate Containing Two Circular 2
Holes,” J. Appl. Phys.19, pp. 77-82. V(y) _ s2 (2)
[4] Ukadgaonker, V. G., 1982, “Stress Analysis of a Plate Containing Two Cir- 812> "

cular Holes Having Tangential Stresses,” AIAA 20, pp. 125-128. ) . ) ) o
[5] Hasebe, N., Yoshikawa, K., Ueda, M., and Nakamura, T., 1994, “Plane Elastit/e also determined that the differential equation satisfied by the
Solution for the Second Mixed Boundary Value Problem and Its Application,tautochrone curve is
Archive of Applied Mechanics64, pp. 295—-306.
[6] Muskhelishvili, N. I., 1953, “Some Basic Problems of Mathematical Theory 272 V'(y)Z
of Elasticity,” P. Noordhoff, Groningen, The Netherlands. 1+x’(y)2=—; i 3)
m V(y)
For (3) to be valid, we require that(0)=0. (This can always be
achieved by simply adding a constant to the potentighe solu-

The Rotating Tautochrone tion for our tautochrone curve in terms of the given potential is

_fy\lzl—v’(u)—ld + 4
T. J. Osler Xy)= o V7 V(u) uXo- @

Mathematics Department, Rowan University, GI""SSborO'We will use the above results when we solve our rotating tauto-

NJ 08028 chrone problem.
e-mail: osler@rowan.edu

2 The Rotating Versus Nonrotating Tautochrones

E. Flores The sum of the kinetic and potential energies for the rotating
Chemistry and Physics Department, Rowan University, parts and for our bead of unit mass on the wirex(y) in the
Glassboro, NJ 08028 rotatingxy-plane(angular velocityw(y)) is

e-mail: flores@rowan.edu 1 1
5! w(Y)?+ Ew(Y)ZX(Y)2+V(Y)

2
In a recent paper by Flores and Osler, the authors investigated 1 (ds

tautochrone curves in the xy-plane under an arbitrary potential “2ldt
Chrane cUve o rotating about the.y-axis with constant angular T foIoving are importan features ¢
9 y 9 A The wire and rotating “parts” are rigid and rotating freely

Comributed by the Anplied Mechanics Division offE A © (without torque about they-axis. (See Fig. 1.
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED B On the left of(S) we see the energy at the moment the bead

MECHANICS Manuscript received by the ASME Applied Mechanics Division, Apr.iS 'eleased at the poink(Y) _amd on t_he right we see the energy
2, 2000; final revision, Oct. 9, 2000. Associate Editor: A. A. Ferri. when the bead is at the arbitrary pointy) on the wire.

1 1
+5lo(y)?+ S 0(y)X(y)?+V(Y).  (5)
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y& x=X(y) is a nonrotating tautochrone under the potertaly),
then we know that the same curve is a tautochrone rotating with
angular velocityw(y) under the potential
(XY) 1
’ V)=V, ()= 5 (1 x()P) w(y)?. (11)

We can eliminatew(y) from (11) by using the conservation of
angular momentum expressed as

L=(1+x(V)?)o(Y)=(+x(y)) o(y). (12)
We require that this angular velocity vary with the starting height
, W Y so as to keep the angular momentungonstant.
(xg,o) Solving (12) for w(y) and substituting intg11) we get
- x V(y)=V 1L 13
(Y)=V,(y) 20 xy)D) (13)

Fig. 1 The rotating frictionless wire with supports

We recall from our previous paper that all the potentials we use
are required to satisfy(0)=V, (0)=0 so that relation§l) to (4)

are all valid. Sincex(0)=x, we must add the constant term

C The wire is given an initial angular velocity and the bead is» 2 . . -
started with zero velocity relative to the rotating frame. In partic v'vhlégy:;xg) \t/(\)/eth;e;'ght side 0{13) so that all potentials are zero

lar, at timet=0 the system is rotating with angular velocityY)
about they-axis. 1

D As a consequence @, at timet=0 the bead has no com- VO =Viy)= 3 0D 2040
ponent of velocity tangent to the curve but it does have a compo- 0
nent of Ve|oci’[y perpendicu|ar to the(y_p|ane gi\/en by We will use (14) to find several rotating tautochrones in the next
o(Y)x(Y). section.

E During the motion the angular velocity of the be@ad the

system of partsgiven by w(y) will vary. It will change so that 3 Finding Exact Rotating Tautochrones
angular momentum is always conservé8ee relation(12)).

L? L2

(14)

F The moment of inertia of the wire, rotating shaft and sup- | OUr Prévious paper we found exact nonrotating tautochrones
! indirectly. We started with a curve=x(y) for which we could

: L . 2
g e e ot Pk componenAEULE he o g () exacy Vi ten use rlaiad
Ito find the potential that would make this curve a tautochrone.

tangent to the curve. The arc lengtis measured from the termi- . . .

; . ; Nine such curves were selected for their ease of calculation. All
nal point (xy,0) to the moving pointX(y),y). . b | dified usi ; :
If we call V. (y) the terms nine can be easily modifie usn(g4) to give us rotating tauto-
* chrones. The results are shown in Table 1.
1 While all the resulting potentials are bizarre, we believe it is
— _ 2, 2 2 y

V() =V(y)+ 2 T (y)™+ 2 w(Y)X(Y)%, ®) important to collect exact solutions of mechanics problems when-
. . ) ever they are possible. When exact analytic solutions cannot be
we can abbreviate the writing ¢6) as simply found, perturbation or numerical solutions are usually possible.

1/ds\? The latter tell us much less than the exact solutions.
V*(Y)=V*(y)+§ q (7)

4 The Differential Equation for the Rotating Tauto-
ds chrone
T \/E\/{V*(Y)}—{V*(y)}. (8) We will now find the differential equation satisfied by the ro-
tating tautochrone. Relatiai®) is the differential equation for the
The minus sign in(8) is due to the assumption that the arc lengthonrotating tautochrone. Substitutig (y) from (14) for V(y) in
s is decreasing. This requires that the initial angular speed) (3) we get

Solving (7) for ds/dt we get

be small enough that when the bead is released with zero relative L2x(y)x'(y)) 2

velocity, the bead falls downward instead of flying outward. For 2 [V’(y)— 77

example, in the case of a gravity-potential, it assumes that 1+x’(y)2=2— (I +x(y)) (15)
d 2 w? L? L?
_y>x(Y)w(Y) :V(y)+ > 7 ]
g 2(1+x(y)%)  2(1+xg)

This is our differential equation for the rotating tautochrone. It is

We can now write by
much more complex and difficult to solve th&B). We can re-

dt=— ds ©) write (15) in the form
W) =V,(y) w21+ x3) (1 +X(AV(Y) ~L2X(y) (1 +x(1)?) (14X (¥)?)
Integrating from the beginning of the motion to the end we get = 4(1+x2)T2{(I1 +x(y)2V'(y) - L2(y)x' (y)}% (16)

We can usg15) or (16) to check our solutions in Table 1, but

Y ds
\/ETZ J; V,(Y)-V (y)' solving exactly for a given potential appears to be difficult. Of
* * course, numerical solutions are possible.

Notice that Eqs(1) and(10) have the same form, thus, they have

the same solution. This implies that for a given cuxvex(y), the :
time T for the rotating case under the potentidly) is the same as 5 The Ca§e Wherel is La.rge. o
the time for the nonrotating case under the poteitigly). This We now discuss the approximation where the moment of inertia
last statement is important for our work. If we know that the curvef the beadx?, is much smaller thah, the moment of inertia of

(10)
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Table 1 Examples of Potentials and Corresponding Rotating Tautochrone Curves

Tautochrone Curve

Arc Length

PotentialV(y)

1 Xx=R sin 6+Xg, Ry R [R-Y||? L2
y=R—Rcosé s=Ré#=Rcos" (—) e {cos’ (—)J +
circle: center %,R), R 8T R 2(14)
radiusR L2
 2(+(V2Ry— Y2+ X0)2)
2 x=R—R cosf+x, s=R@=Rsin"Y(y/R)) R L2
y=Rsin¢ v {sin"Yy/R)¥*+ 5
circle: center R+Xx,,0), (1+x5)
radiusk L0 +(R- Ry 4 %0)2)
3 x=Rsin(a+6)—Rsina s=R6 R J[ay 2 L2
X0 Rcoga)-y S [COS* — |7 552
y=R cosa—Rcosf+6), 0=cos‘1(T —a 8T R 2(1+5)
R and « fixed L2
circle: radiusR —
center 2(1+(JR?>— (R cosa—y)>—Rsin a+xy)?)
(Xp—Rsina,Rcosa) wherea= R cos()
4 x=R(6+sin 6)+xy s=4Rsin(0/2) R L2
y=R(1—cos6) s=2,2Ry — Yt ———
inverted cycloid: T 2(1+x9)
base liney=2R L2
_ = ,
2(I+ Rcos’l(?)+\/2Ry—y2+xo )
5 x=R6— R sin 6+, s=4R(1—cos(@/2)) 2R L?
y=R—Rcosé — YVt o———
cycloid s=4R(1_ A1 %) T 2(1+x3)
L2
_ = .
2| 1+{Rcos*? & | V2Ry- Y2+ %o
6 X=ay+Xg s=\1+a% (1+a%) L? L?
gz V' 2+ @ytxd | 2000
7 x=2\/ay3/3+xq 2 s
_ 3/2_ 312_ 172
S 3a[(lJra)/) 1] 18272 [(1+ay)*-1]
L2 L2
- +
201+ (2\ay¥i3+x0)%)  2(1+x5)
8 X=ay/2+Xo s=(ayy1+a%y?+ i
2,2 2\,2\\2
In(ay+1+a%y?))/2a W(ay\/bra y°+In(ay++1+a’y?))
L2 L2
T 20+ (a2 xg)?) | 201 +x3)
9 y=a cosh(k—xp)/a)—a s=\(y+a)?—a? ] , L2
+X%o grlyrar—al+ 2000

+a 2
—12|2|1+{acosh 1|2 +%o
a

the wire, shaft and support. We will also assume that 0, so
that the wire is attached directly to the shaft at the bottom. Start-

2

1L )
Vi(y)=Vy) = 5 7z X(y)%
ing with (14) we can write

) ) The conservation of angular momentyf®), to a first-order ap-
L L proximation becomes simply=1|w wherew is now a constant.

Ve =V 21(1+x(y)2) 21" Thus the above expression becomes

Expanding the second term on the right in powers@f)?/I we

1
_ _ -2 2
obtain to a first-order approximation Vi () =V(Y) 2¢ X(y)™
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The differential Eq(15) is now much simpler,
2T2 {V’ 2X(y)x 2
Lx(y)2 =2 {V'(y)— o®x(y)x' ()} _
? 1 ) )
[V(y)—iw x(y) }
As an example consider the potential of a simple harmonic

oscillator V(y) =ky?/2 and try a straight line solutior(y)=ay,
the differential equation becoméafter simplifying

472
1+a2=?{k—a2w2}.

Solving fora we geta= \JAT?k— w?/4T?w?+ w*. Thus, under a
harmonic oscillator potential the tautochrone curve is a straight
line with slopea.

In general the potential for the rotating tautochrone, to a first-
order approximation, is Xy

1 . . . .
V(y)=V, (y)+ 5 wzx(y)z-i-C. Fig. 3 Why all tautochrones act like simple springs

The first term is the potential of a nonrotating tautochrupéy),

the second term is the potential of a simple harmonic oscillator,
and C is a constant. The second term could be produced by an )
ideal spring stretched along tleaxis with one end attached to the Vi(y)=g2s™
bead and at the other to the shaft. As the bead moves down s

does the spring. The tension in the spring serves to exactly can?:k‘?lxt use(14) to replaceV, (y) to obtain

71_2

the centrifugal forcevx. Thus, the motion of the bead along the 1 L2 L2 2
wire, as seen by an observer rotating with the system, will be V(y)+ = > 5= ——5 5.
identical to the motion of the bead of a nonrotating tautochrone of 2 (1+x(y)%) 2(1+xp) 8T
potentialV, (y). Differentiate with respect ty and get

L2x(y)x'(y) @2 ds
6 Physical Intuition Behind Tautochrones V(y)— Trxy))? a2 Say’

There is a simple, beautiful explanation for all tautochrone m
tion. All tautochrones act like simple linear springSuppose a
massm attached to a spring is displaced a distaAciom equi-

%rom (12) we see thato(y)?=L2/(1 +x(y)?)? and thus the above
expression can be written as

librium. The time required for the mass to return to the equilib- dx w2 ds
rium position is VI (y) —=x(y )w(y)zdy 2 Say
_m /m Finally we multiply bydy/ds to get
=-\/T a7)
2 K dx 72
wherek is the spring constant. This time is independent of the V'(Y) X(Y)w( )= ds = a2

displacementA and thus we have tautochrone motion in every _ o _ _
simple spring. The restoring force from the spring is proportion&irom Fig. 2 we see that the derivatives in the above expression
to the distances that the spring is stretche&=ks. Solving(17) can be replaced bgix/ds=cos¢ anddy/ds=sin 6.

for k we can write this force as 2
ma2 V' (y)sin —x(y) w(y)? cosf= S (19)
F= FS. (18)

Using Fig. 3 we see that the tersfi (y)sin 6 is the component
This formula is also valid for any nonrotating tautochrdf@]).  of the force generated by the potential in the direction tangent to
Let us now examine the forces on the beatlunit mas$ on the tautochrone curve. We also see that the tefy) w(y)? cosé
our rotating tautochrone curve. Starting with relati@ and re- is the component of centripetal acceleration along the tautochrone
placing the potential by, (y) we get curve.

Thus we see thdtl9) tells us that when the forces acting on our
bead are resolved in the direction tangent to the tautochrone
curve, then the sum of these forces is proportional to the distance
s from the final point on the tautochrone. This is similar(i®)
that describes the simple sprin@lotice that withm=1 the con-
stants in(18) and(19) are identica). The sum of the forces tangent
to a tautochrone curve on a moving bead is proportional to the

ds dy distance measured from the final point to the head
é J References
/ dx [1] Flores, E. V., and Osler, T. J., 1999, “The Tautochrone Under Arbitrary Po-
tentials Using Fractional Derivatives,” Am. J. Phy87, pp. 718-722.
[2] McKinley, J. M., 1979, “Brachistochrones, Tautochrones, Evolutes, and Tes-
Fig. 2 Geometric meaning of differentials selations,” Am. J. Phys47, No. 1, pp. 81-86.
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Smooth Asymmetric Two-Dimensional deformation due to contact pressure and the global flexural defor-

. .. . mation of the beam. The validity of the solutions presented is
Indentation of a Finite Elastic assessed by comparing the results obtained to the predictions of

Beam modified beam theory solutions.

Generalized Elasticity Solution for a Finite Layer

M. Zhou ) o . In this section we present the solution for a finite elastic layer of
Graduate Research Assistant, Civil and Environmental thickness that is subjected to an arbitrary upper surface pressure

Engineering Department, University of Alabama, distribution. This solution is achieved by the superposition of an
Huntsville, AL 35899 elasticity solution for an infinite layer loaded on its upper surface
with an elasticity solution for a finite layer subjected to asymmet-
ric bending.
W. P. Schonberg_ A suitable elasticity solution that represents normal loading on
Professor and Chair, the upper surface of an infinite elastic layer in plane strain with no
Civil Engineering Department, University of Missouri-  loading on its lower surface is given by Keer and Milldi. To
Rolla, Rolla, MO 65409 complete the finite elastic layer solution, we introduce the follow-
Mem. ASME ing_ elasticity solution for the gsymmetric bending of a finite layer
e-mail: wschon@umr.edu (thicknessh and lengthL) having end moments, andM :
oy,=0, Q)
V(X)
Standard methods of beam indentation analysis use a beam theory axy:Ty(h—y), )
solution to obtain the load-displacement relationship and a Hertz
solution to calculate local stresses. However, when the contact M (X) h
length exceeds the thickness of the beam point contact can no O'XXZI—( — 5) 3)
longer be assumed and Hertzian relations are no longer valid.
This paper presents an improved superposition solution technique 1 2—-v M-

M
that uses a true elasticity solution to obtain the Ioad-displacememx=5 [ bo—ay+ TO [2(h—y)®—3h(h—Y)?]
relationship in non-Hertzian indentation problems.

[DOI: 10.1115/1.1352068
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M X+

h
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Introduction 1
Uy—B

1 2
aptaXx— 3 M x“—

In this paper, we present an improved solution to the two-
dimensional problem of a finite beam of lendttand thicknes$ v
that is loadedasymmetricallyon its upper surface by a frictionless — ———M(x)(y?—hy) (5)
cylindrical indenter(see Fig. 1 Standard methods of indentation 2(1-»)D
analysis use a beam theory solution to obtain an overall load- __ 1 ("au, 1 M,—M, ,

o == —5 (Lo*+x)

displacement relationship and then a Hertzian contact solution to g(x)= 5

calculate local stresses under the indenter. However, previous
modeling efforts have shown that the stress distribution in the
region of contact will differ significantly from a Hertzian one +
when the contact length exceeds the thickness of the beam. In 12(1-v)D
such cases, point contact can no longer be assumed and Hertzian M. —M
relations are not valid. — 1 0

Problems of this type were solved previously by Keer and M) =Mo+ L (Lot), "
Miller [1] and Peck and Schonb€r@] using a GLOBAL/LOCAL Mo —M
approach that superposed beam theory and elasticity expressions. V()= 1 0 8)
The technique developed was also applied to cantilever beam in- L

dentation by Keer and Schonbd®j4] and subsequently modified - _ 13
. ; wherely, L, andL, are as shown in Fig. ID= uxh®/6(1—v),
to include beam rotation effects by Zhou and Schonké&igA = h3/12, My, M, are end bending moments et — L, and at

review of the superposition procedure used by Keer, Schonbe L tivel @ b ( j unk i
et al. reveals that it has a problematic aspect: it uses an appr&%— 1, FESPEclively, an@,, Do, a, aréfas yej unknown con

mate solution(instead of an elasticity solutirto establish the >atS: This solution is a superposition of the Airy stress function
load-displacement relationship at the contact site. solutions for asymmetric bending and for pure shear.

The improved superposition technique presented in this paper>UPerPOsing Eqstl)—~(8) with the corresponding expressions
addresses this issue by using a static finite layer solution that i Of stresses, dlsp!apements_, etc,, in ngr and Mﬁl.léryleld.s the .
true elasticity solution. Also, in a manner similar to that used bgeneralized elasticity solution for a finite length isotropic elastic
Zhou and Schonbef@] to model cantilever beam indentation, th yer subjected to an afb"fary upper Surf"’.‘ce Ioadln_g. In the next
rotation of the beam under the indenter is included in the mixegctio™: We apply appropriate end conditions to this solution to
boundary condition at the contact site. As a result, the final solB: tain the desired beam indentation problem solutions.
tion takes into consideration all of the prescribed boundary and
end conditions and describes more accurately the local surfésg@ymmetric Beam Indentation Model

The mixed boundary value problems to be solved in this section
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  gre those of a simply supported and a fixed-fixed elastic beam that

MECHANICAL ENGINEERS for publication in the ASME QGURNAL OF APPLIED : f ; B e
MECHANICS. Manuscript received and accepted by the ASME Applied Mechanit:&slre indented by a Cylmdncal punch on their upper surf

Division, May 31, 2000; final revision, Oct. 10, 2000. Associate Editor: M.-J. Pinadain Fig. ). The solutions of these problems are achieved by
dera. application of the mixed boundary conditions at the contact sites

al_ Mox_

0 X
vhZ  M;—M,
L (6)
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g(x)=0 (17)
Fixed-Fixed Ends.

»(h®( B+shpBch
Kl(X,t)Z—f [E %4‘1 ExJo(€X)
L, L 0
h3
t - 5T 5shalSELo )+Sin(§L1)]]Jo(§t)d§
Fig. 1 Indentation of a finite layer 5
3—2v wh
BT (18)

and the appropriate end support conditions in the generalized elas- h (= x

ticity solution presented in the preceding section. As in Zhou and K,(x,t)= J’ —[coq éLg) —cog L) ]I (Et)dE
Schonberd5], the boundary condition for both types of beams at - 6L J, B—shB 0 v

contact sites is written as follows: (29)

X2
Uy(X,00= A+ fpx— R [x|]<c 9) (xt)—h3(3)+th—3 B+shpchg )

~a 2 2
where A and 6, are the beam upper surface displacement and 61t B —shp
rotation under the indenter. The two types of end support condi- _ _
tions that need to be satisfied &® simple supportgzero mo- X[Jo(€x) — ExJy(€x) —1]31(£)dé (20)
ment and displacement at the beam enasd(2) fixed endqzero
slope and displacement at the fixed endiy applying these end
support conditions to appropriate expressions in the generalized
elasticity solution, we obtain a system of four equations for the
four unknownsa,, a;, My, andM; for each beam type. Once X
solved, the expressions for these four quantities are used in apply- fO)= 5 oL (L1=Lo)(My—My),
ing the mixed boundary condition at contact site given by @&y.
Following the approach used by Keer, Schonberg, et al. we obtain
two coupled Fredholm integral equations of the second kind.
These equations have the following forms:

Ka(x,1)=0 (1)
(22)

3 x?
g(x):_zr(Ml_MO) (23)

h3 c c Dx
Ew(x)+f 1//(t)K1(x,t)dt+f d(HK(x,t)dt+f(x)=— r The functionsy(t) and ¢(t) are related to the symmetric and
0 0 anti-symmetric components of the surface loading as follows:

(10)
h3 c c c
€¢(x)+f ¢(t)K3(x,t)dt+J’ Y(t)Ky(x,t)dt+g(x)=0 szwj Y(t)dt, (24)
0 0 0
(11)
where the kernelk; throughK, and the functiong(x), g(x) are c
given as follows: M=-—m . te(t)dt. (25)
Simply Supported Ends. Once Egs.(10),(11) are solved to obtairs(x) and ¢(x), all
h3 [ B+shBchB necessary quantities can also be readily obtained. The actual so-
Kl(x,t)sz (WnLl ExJp(€x) lution of Egs.(10),(11) is performed numerically in nondimen-
sh's sional form. This transformation is obtained using the following

2 nondimensional parametersLq/h, L/h, t/c, x/c, y/h,
X COS{%LO)Jrzcos(gl‘l)}]o(gt)der MX Ry (x)/Dc, andRh®¢(x)/Dc, andRA/h2. To assess the va-
2 3 4L lidity of the elasticity solutions, their predictions for beam dis-
(12) Placement are compared with the predictions of beam theory so-
lutions that use as input the contact pressure generated by the

Li—L e > . . ;
K(x,1) = ( Al,|_ 0) «t (13) elasticity solutions. These solutions are given as follows:
Simply Supported Ends.
h3/1\ h® [/ B+shBchB
KS(X,t):_(—)‘i‘_f 2_—2+1) L.L
At/ 8 Jot Fosivh Ass= 25 [LoL 1P+ (Ly~LoM]
3DL
3mx?
X [Jo(éx) — Exdu(£x) — L1y (Edé— —g—t o/ 7l Ll t
— tzl/f(t)dt
14)
37x? 77('—1 Lo)
Ka(x,t) == =g~ (Lo—Ly) (15) DL t $(t)d (26)
f(x)=0, (16) Fixed-Fixed Ends.
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L3L2 LoL, note that while there were differences in peak contact stress val-
App=Ags W(LZ—LOLl)P— W(Ll—Lo) ues, the overall shapes of the contract stress distributions were
very similar to those presented by Keer and Milld] and by
X[L2+(Ly—Lg)2+LoL,]M Peck and Schonbef@].
A comparison between the predictions of beam displacement
mloly under the indenter generated by the improved solutions developed

[L242(L;—Lg)2+2LoL,] Jctzlﬂ(t)dt
0

12018 herein and the predictions of the beam theory solutions showed

that the results of the two solutions agreed very well, and that the

mloli(Li—Lo) (€, agreement improved as/h increased ana/h decreased. This
Wfot $(t)dt (27)  can be explained by the following considerations. FirstL4s
o o increases, the effects of shear deformation on beam response be-
whereAssis given by Eq(26), andP, M are again given by Egs. come negligible. Second, agh decreases, the local effects of
(24),(25), respectively. beam upper surface rotation become negligible. In both cases,
while the elasticity solution incorporates those effects, the beam
Results and Discussion theory solutions do not. Therefore, the two solutions will match

Solutions to the two types of indentation problems were ofjnore closely for indenter locations that result in minimal shear

tained forc/h=0.25, 0.5, 1.0 and 2.0./h=10.0 and 20.0, and del‘;o.][fmations ag‘dt for Smﬁ”eg.h "Ia'“es- sictions of the el
for eachL/h value, 2_0“_:1.0, 15’ and 1.7(Where 2_0“_ Ifferences between the ISP acement preaictions o e elas-

_ ; ; .4 licjty solution developed herein and the predictions obtained using
=1.0 corresponds to the case of central indentation studied .
Keer and Mri)ller [1]). We note that for 2o/L=1.7 andL/h the GLOBAL/LOCAL models developed previously by Keer and

=10, ¢/h=2.0 would imply that the contact length would extend"iller [1] and Peck and Schonbef@] showed fairly minimal

past the support; hencelh= 2.0 was not considered in this casedifferences for smaké/h values and for mostL2/L valuesitypi-

For the fixed-fixed beam indentation problem, all calculations af@!ly 1€ss than five percentThis was expected becaugb the
performed with a Poisson’s ratio of 0.3. The results of this parg®Verning equations of motion for the solution developed herein
metric study were compared with values obtained using the mayd the solutions developed by Keer and Millet and Peck and

els developed by Keer and Mill§t] and Peck and Schonbefig] Schonberd 2] are identical for the_ case of simply supported ends,
that did not include upper-surface rotation effects. and(2) beam upper surface rotation effects on beam response are

For small values o€/h (i.e.,c/h<0.5), the predictions of peak minimal when for smallc/h values. Furthermore, in the case of

contact stress values by the various solutions agreed quite wéifed-fixed beams, asl3/L—1 andL/h increases, the condition
However, forc/h=1 the peak stress predictions were found t8f Zero rotation angle at the fixed end supports has less of an
occasionally differ significantly. This occurred because/sin- effect on the contact zone. Therefore, the effects of second order
creases, the effects of beam upper surface rotation effects becaimearing effects on the average beam rotatidor the new model
more pronounced. While the current model incorporates those become negligible. While the current model incorporates those
fects, the previous models do not. Therefore, the various modef§ects, the previous models do not. Therefore, the newly devel-
will match more closely for smaller contact areas and indenteped and previous models will match more closely for smaller
locations that result in minimal rotation effects. For larger contacbntact area and indenter locations that result in minimal rotation
areas and for indenter locations near beam ends, peak contaw shearing effects.

stress values predicted by the various models differed by as muclirigure 2 shows the nondimensional load-displacement curves
as 10-15 percent for both types of beam supports. Finally, i@ L/h=10 and 20 fixed-fixed beams wheré 2ZL=1.7. The

Non-Dimensional Displacement Comparisons
New Model vs Old Models
Fixed-Fixed Beams, 2Lo/L=1.7, L/h = 10.0, 20.0

18

16 2
£ 14
£ /
§ 12 A
a //
2
o 10
E L/h =20.0 /
o s
[7]
E 6 =&~ New Model
o —4— Beam Theory
(=4
24 / ---P&S [2] -

L/h=10.0
2 /
0 ¥ L) v L) v T v
0.25 0.50 1.00 2.00
c/h

Fig. 2 Nondimensional displacement comparisons, hew model versus old
models (Keer and Miller [1]; Peck and Schonberg [2]), fixed-fixed beams,
2Ly/L=1.7, L/h=10.0 and 20.0
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larger differences in some of the indentation scenarios shown$ummary and Conclusions

this figure can probably be attributed to limitations in the numeri- The stati dd ic indentati b d olat tin-

cal integrations of the infinite integrals that appeared in the work € stafic and dynamic indentation of beams and plates contin

performed by Peck and Schonbdi?]. According to Peck and ues to be an intriguing problem, especially for scenarios in which

Schonberg, it was not possible to integrate the kernels in tf?erge area contact can b? expected to occur. The sqll_mon scheme

fixed-fixed beam equations to the same accuracy as those in pigSented herein is a refinement of the approach originally devel-

simply supported cases. This was due to the fact that the kern@R€d for the relatively simple problem of central beam indenta-

for simply supported beam equations converged at a ratezdf 1,tion. We found thqt thg results _prowded by this refinement are, in

while those for the fixed-fixed beams converged at the muéﬂ,OSt cases, not slgnlflcantly different from those. that can be ob-

slower rate of 14 In our solution, we have overcome this numeril@inéd using existing GLOBAL/LOCAL analysis techniques.

cal integration limitation by using exact integration results fofiowever, the changes introduced into the modeling process

expressions involving Bessel functions. This allowed the kerneTQOlJ_'d ?HOW this refmed solution technique to more accura_tely

in the fixed-fixed beam equations to converge at the much fasfi@dict internal stress fields due to upper surface indentations.

rate of 156h¢. This cqpablllty is critical in the case of composite bgams or plates
Interestingly enough, the value Bf(the radius of the indenter where internal damage can appear prior to any evidence of dam-

did not appear to have any bearing on the solution of the govei@ge on the external beam or plate surface.

ing equations for this problem. That is, the nondimensional stress

and displacement values calculated using the model developed

herein would appear to be valid for all values Rif Mathemati-

cally, this occurs because of the nondimensional scheme: in tﬁ%ferences

scheme, all traces & are removed by the nondimensionalization ) ) o

process. HoweverR doeshave an effect when the nondimen- [ Keer L'&"é'cﬁ“fog""'e“%GR'7'117983* “Smooth Indentation of a Finite Layer,”

sional valugs of stress and d!splacgment are. tr.anSformed Into ref’é] Peck,gJ. A., and S’czznberg, W. P., 1993, “Asymmetric Indentation of a Finite

values. While all of the nondimensional predictions of the model  Ejastically Supported Beam,” J. Appl. Mecl&0, pp. 1039—1045.

may be mathematically possible, they m@gt be physically at- [3] Keer, L. M., and Schonberg, W. P., 1986, “Smooth Indentation of an Isotropic

tainable for some values & For example, the case ofh=2 is [4] (é:g:ilivel\rllBe;rli]"’s::rl]wtéibesrgndvs\;lSlguclﬂsféé)&g;;é&alndentat'on of a Trans
. . , L. o , Py s I -
clearly more read_lly _a_ttamable for V_ery large VallfIGSRdb's com- versely Isotropic Cantilever Beam,” Int. J. Solids Stru@2, pp. 1033—-1053.
pared toh), and significantly less s@f not impossiblg for small [5] Zhou, M., and Schonberg, W. P., 1995, “Rotation Effects in the Global/Local
values ofR (as compared tt). Analysis of Cantilever Beam Contact Problems,” Acta Medi0g pp. 49-62.
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